Русский

Метод регистрации мембранного потенциала тромбоцитов с использованием пэтч-клампа в конфигурации перфорированная «целая клетка»

, , , ,

В данной работе рассмотрены подходы к регистрации мембранного потенциала тромбоцитов с использованием пэтч-клампа в конфигурации перфорированная «целая клетка». Проведены записи мембранного потенциала с использованием порообразующих агентов нистатина и сапонина и выбраны оптимальные условия, позволяющие регистрировать мембранный потенциал без нарушения гигаомного контакта и влияния на функциональную активность тромбоцита. Показана возможность регистрации осцилляций мембранного потенциала тромбоцита. Предложенный подход регистрации мембранного потенциала будет полезен при исследовании роли мембранного потенциала и механизмов его регуляции в функциональных ответах тромбоцитов.

0
0
#тромбоциты#пэтч-кламп#нистатин#сапонин#мембранный потенциал

Оценка функциональной активности нейтрофилов с применением красителей феноксазинового ряда

Нейтрофилы – основные лейкоциты крови, осуществляющие для защиты организма от патогенов фагоцитоз, образование нейтрофильных внеклеточных ловушек, дегрануляцию, а также генерацию активных форм кислорода (АФК), азота (АФА) и галогенов (АФГ). Хлорноватистая кислота (HOCl) образуется в биологических системах в присутствии пероксида водорода и хлорид-аниона в каталитическом цикле преимущественно фермента азурофильных гранул нейтрофилов – миелопероксидазы (МПО). HOCl играет важную роль в физиологических и патологических процессах, однако регистрация этого высокореакционного соединения затруднена в том числе из-за наличия многочисленных других АФК, АФА и АФГ, генерируемых клетками. В данной работе предложен комплексный подход исследования продукции АФК и АФГ нейтрофилов флуоресцентным методом с использованием феноксазиновых красителей целестинового синего B (CB) и галлоцианина (GC). Показано, что использование GC и CB позволяет оценить функциональный ответ нейтрофилов на стимулы различной природы (форболовый эфир PMA, компонент клеточной стенки бактерий fMLP, лектины растений).

Скорость изменения интенсивности флуоресценции зондов в суспензии активированных нейтрофилов. *p<0,05 относительно контроля
0
0
#активные формы кислорода#флуоресцентные краски#феноксазиновые красители

Преимущество применения лактадгерина для оценки экспонирования фосфатидилсерина в тромбоцитах

экспонированного фосфатидилсерина – аннексина V и лактадгерина. На примере тромбоцитов показано, что лактадгерин является более перспективным за счет большей чувствительности, и его применение, особенно в микроскопии, имеет преимущество в исследовании взаимосвязей сигнальных процессов при образовании прокоагулянтной субпопуляции тромбоцитов.

Иллюстрация тромбоцитов человека, положительных по лактадгерину, но отрицательных по аннексину V (отмечены стрелками). А – сравнение с аннексин V положительным тромбоцитом. Б – тромбоцит с функционирующими митохондриями (ТМРМ+) и связыванием с лактадгерином (помечен стрелкой). ДИК – дифференциально-интерференционный контраст; Наложение – сумма изображений всех флуоресцентных каналов и проходящего света. Длина масштабного отрезка 10 мкм, n=5.
0
0
#тромбоциты#фосфатидилсерин#лактадгерин#аннексин V

Репарация плазматической мембраны, блеббинг и микровезикуляция: параллели и взаимосвязи

, ,

При активации или гибели клетки происходят деформации ее плазматической мембраны, которые грубо можно разделить на три категории. Первое явление, при котором происходит частичное локальное разрушение липидного бислоя и актинового кортекса и их последующее восстановление клеткой, относят к репарации мембраны. Вторая категория, при которой происходит образование выступающих наружу мембранных «пузырей», называется «блеббинг». И третья категория, при которой из плазматической мембраны образуются везикулы, содержащие белки мембраны и компоненты цитозоли, называется микровезикуляцией. Все эти явления играют важную роль в жизни организма: везикуляция является важным каналом обмена информацией между клетками, вместе с блеббингом она вносит существенный вклад в метастазирование опухолей, а нарушения репарации мембраны приводит к миодистрофиям. В литературе принято каждый из этих процессов изучать изолированно от других, хотя между ними есть множество параллелей и общих механизмов. Например, все три явления управляются перестройками актинового цитоскелета. В настоящем обзоре обсуждается вопрос, являются ли эти три процесса следствием одного и того же явления. Мы рассматриваем параллели, прослеживаемые в молекулярных механизмах этих явлений, которые приводят к гипотезе о возможности взаимообмена результатов исследований, посвященных процессам репарации мембраны, блеббинга и микровезикуляции.

Схема процессов репарации мембраны (А), блеббинга (Б) и микровезикуляции (В). Повреждение клеточной мембраны или активация клетки вызывает подъём кальция посредством его входа через разрыв мембраны или выхода из эндоплазматического ретикулума через каналы SERCA. Кальций вызывает цепь сигнальных событий, приводящую к активации GTPазы RhoA, которая активирует киназу ROCK, активирующую киназу LIMK, которая в свою очередь активирует миозин-II и кофилин, запуская формирование сократительных волокон. Под действием кальциевой сигнализации к месту повреждения также привлекаются белки ESCRT (см. текст). При активации клетки из-за усиленного актомиозинового сокращения поднимается внутриклеточное давление, что может запустить блеббинг или везикуляцию, вызвав отрыв мембраны от актинового кортекса. В нормальном состоянии мембрана фиксирована на актиновом кортексе при помощи белков ERM (ezrin, radixin, moesin).
0
0

Моделирование агрегации тромбоцитов с помощью клеточного автомата

Агрегация тромбоцитов является важным процессом, отвечающим за своевременную остановку кровотечения. Одним из инструментов, позволяющих изучать данную систему, является компьютерное моделирование. Использование клеточного автомата в качестве модели дает возможность как изучать динамику отдельных агрегатов, так и исследовать поведение системы в целом. Целью данной работы было изучение агрегации тромбоцитов с помощью модели на основе клеточного автомата.  В результате была построена модель агрегации тромбоцитов, включающую в себя 4 процесса: диффузию, активацию, агрегацию и дезагрегацию с дальнейшим усложнением в виде добавления гидродинамического потока. Было показано, что в условиях потока основную массу агрегатов составляют димеры и тримеры, тогда как агрегаты больших размеров встречаются гораздо реже.

Блок-схема ключевых этапов работы алгоритма
0
0
#агрегация тромбоцитов#математическое моделирование#клеточный автомат

О факторах влияния на исследования сигнализации тромбоцитов с помощью кальциевых флуорофоров

Наблюдение кальциевой сигнализации в тромбоцитах – клеток крови, вовлеченных в остановку кровотечения и формирование кровяных сгустков – важная часть фундаментальных исследований гемостаза. Такие исследования возможны благодаря использованию лишь кальциевых флуорофоров – маленьких молекул, которые проникают через клеточную мембрану благодаря гидрофобной -АМ части, которая затем гилролизуется эстеразами в цитозоле. В этой работе мы предполагаем феномен негомогенной загрузки кальциевых флуорофоров в тромбоциты.

Мы использовали тромбоциты здоровых взрослых доноров, загруженные разными флуоресцентными красками (CalBryte590, DiOC6 (3), Fura Red, Fluo-4 and CellTracker Violet BMQC) и иммобилизованные на антитела к CD31 в плоскопараллельных проточных камерах. Микроскопия полного внутреннего отражения (TIRF) была использована.

Мы продемонстрировали, что все исследуемые краски загружались гетерогенно: 30% тромбоцитов загружались в тромбоциты в 2-6 раз выше, чем медианное значение по популяции. Используя CalBryte590 как пример, мы показали, что снижение температуры инкубации, добавление Pluronic 127 в среду, удаление холестерола из мембраны значительно снижает гетерогенность распределения краски в популяции. Оценивая активацию тромбоцитов на поверхности, мы показали, что вероятность наблюдения сильной активации, измеренная по интенсивности осцилляций кальция, коррелирует с количеством краски в тромбоците. Таким образом, мы заключаем, что тип используемого флуорофора и условия его загрузки может значимо влиять на результаты экспериментов по наблюдению кальциевой сигнализации в тромбоцитах.

null
0
0
#тромбоциты#кальциевые флуорофоры#мембрана#флуоресцентные краски#внутриклеточная сигнализация

Фосфотидилинозитол-содержащие везикулы необходимы для активации PLC ζ в соответствие с предсказанием математической модели

Фосфолипаза Cζ (PLCζ) — фермент цитоплазмы и акросомы сперматозоидов млекопитающих. Он катализирует реакцию гидролиза фосфатидилинозитол-4,5-фосфата на инозитол-3-фосфат и диацилглицерин. PLCζ присутствует в акросоме и цитозоле покоящихся сперматозоидов, но не оказывает значительного влияния на их метаболизм. После слияния сперматозоидов и оболочек яйцеклетки активность PLCζ возрастает, поскольку он начинает связывать оболочки яйцеклетки. Причины, по которым PLCζ неактивна в сперматозоидах или соматических клетках любого типа, неизвестны.

В настоящей работе была разработана модель, описывающая активность PLCζ при физиологических концентрациях кальция. Теоретическое моделирование в данной работе объясняет отсутствие активности PLCζ в любом типе клеток млекопитающих, кроме яиц. Было показано, что присутствие богатых фосфоинозитолом везикул необходимо для активности PLCζ в зрелых яйцах млекопитающих.

Схема полной модели. (A) Реакции в ооците. PLCζ - бескальциевый PLCζ, PLCζ_Ca - PLCζ, связанная с одним ионом кальция, PLCζ_2Ca - PLCζ, связанная с двумя ионами кальция, PLCζ_3Ca - с тремя, PLCζ_4Ca - с четырьмя. PLCζ_m - PLCζ, связанная с клеточной мембраной, PLCζ_ (Ca m) - PLCζ, связанная с клеточной мембраной и одним ионом кальция, PLCζ_ (2Ca m) - PLCζ, связанная с клеточной мембраной и двумя ионами кальция, PLCζ_ (3Ca m) - с клеточной мембраной и тремя ионами кальция, PLCζ_ (4Ca m) - с клеточной мембраной и четырьмя ионами кальция. PIP2 и PIP2_v - фосфатидилинозитол-4,5 - бис-фосфат на мембране клеток и везикул соответственно. DAG и DAG_v - диацилглицерол на клеточной мембране и везикулах соответственно. IP3 - инозитол-3-фосфат. PLCζ_v - PLCζ, связанная с везикулами, PLCζ_ (Ca v) - PLCζ, связанная с везикулами и одним ионом кальция, PLCζ_ (2Ca v) - PLCζ, связанная с везикулами и двумя ионами кальция, PLCζ_ (3Ca v) - с везикулами и тремя ионы кальция, PLCζ_ (4Ca v) - с везикулами и четырьмя ионами кальция. (B) Модель сперматозоидов идентична модели ооцита, за исключением отсутствия везикул.
0
0
#фосфолипаза Сz#кальциевая сигнализация#сперматозоид#овоцит

Метод пэтч-клэмп для изучения ионных каналов активированных тромбоцитов

В данной работе рассмотрены существующие и предложены новые подходы к использованию методики пэтч-клэмп для измерения активности одиночных ионных каналов и мембранного потенциала тромбоцитов человека в конфигурации «cell-attached». Проведена регистрация событий открытия и закрытия одиночных каналов тромбоцитов в конфигурации «cell-attached» после активации сильными агонистами: тромбином и иономицином. Экспериментально и теоретически с использованием простых электрических цепей проанализирована возможность измерения мембранного потенциала тромбоцитов в конфигурации «cell-attached», и обнаружена вероятность образования спайков, вызываемых открытиями одиночных каналов, в процессе регистрации мембранного потенциала методом пэтч-клэмп. Описан простой способ получения конфигурации «inside-out», а также получены записи токов через кальций-управляемые одиночные ионные каналы. В целом, в данной работе предложены новые подходы для дальнейшего изучения роли ионных каналов и мембранного потенциала в физиологическом и патофизиологическом отклике тромбоцитов.


Схематическая иллюстрация регистрации токов от одиночных ионных каналов тромбоцитов во время их активации
0
0
#тромбоциты#patch-clamp#мембранный потенциал#ионный канал