Библиографические ссылки статьи: “Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные связи. Часть 1: ответы”
  1. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion.

    Panteleev MA, Dashkevich NM, Ataullakhanov FI.

    Thrombosis Research. 2015, 136, 699-711

  2. Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition.

    Getz TM, Piatt R, Petrich BG, Monroe D, Mackman N, Bergmeier W.

    Journal of Thrombosis and Haemostasis . 2015, 13, 417-425

  3. Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa.

    Panteleev MA, Saenko EL, Ananyeva NM, Ataullakhanov FI.

    Biochemistry Journal. 2004, 381, 779-794

  4. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization.

    Podoplelova NA, Sveshnikova AN, Kurasawa JH, Sarafanov AG, Chambost H, Vasil’Ev SA, et al.

    BiomemBiochimica et Biophysica Acta (BBA)-Biomembranesbranes. 2016, 1858, 1216-1227

  5. Platelets and vascular integrity.

    Deppermann C.

    Platelets. 2018, 29, 549-555

  6. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor.

    Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN.

    Oncohematology. 2018, 13, 83-90

  7. How platelets safeguard vascular integrity: Platelets and vascular integrity.

    Ho-Tin-Noé B, Demers M, Wagner DD.

    Journal of Thrombosis and Haemostasis. 2011, 9, 56-65

  8. Platelet ITAM signaling is critical for vascular integrity in inflammation.

    Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N, et al.

    Journal of Clinical Investigation. 2013, 123 (2), 908-916

  9. Editorial: Platelets and Immune Responses During Thromboinflammation.

    Schattner M, Jenne CN, Negrotto S, Ho-Tin-Noe B.

    Frontiers in Immunology. 2020, 11, 1079

  10. he dual role of platelet-innate immune cell interactions in thrombo-inflammation.

    Rayes J, Bourne JH, Brill A, Watson SP.

    Research and Practice in Thrombosis and Haemostasis. 2020, 4, 23-35

  11. Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro.

    Nebie O, Barro L, Wu Y-W, Knutson F, Buée L, Devos D, et al.

    Platelets. 2021, 32 (2), 226-237

  12. Platelets and cancer angiogenesis nexus.

    Wojtukiewicz MZ, Sierko E, Hempel D, Tucker SC, Honn KV.

    Cancer and Metastasis Reviews. 2017, 36, 249-262

  13. Platelets and hemostasis.

    Panteleev MA, Sveshnikova AN.

    Oncohematology. 2014, 9, 65-73

  14. Mathematical Techniques for Understanding Platelet Regulation and the Development of New Pharmacological Approaches. In: Gibbins JM, Mahaut-Smith M, editors. Platelets and Megakaryocytes 

    Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN.

    Advanced Protocols and Perspectives, New York, NY: Springer. 2018, 4, 255-279

  15. ITIM receptors: more than just inhibitors of platelet activation.

    Coxon CH, Geer MJ, Senis YA.

    Blood. 2017, 129, 3407-3418

  16. Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis.

    Geer MJ, van Geffen JP, Gopalasingam P, Vögtle T, Smith CW, Heising S, et al.

    Blood. 2018, 132, 1413-1425

  17. IκBβ is an essential co-activator for LPS-induced IL-1β transcription in vivo.

    Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR, et al.

    ournal of Experimental Medicine . 2010, 207, 2621-2630

  18. Costimulation, Coinhibition and Cancer.

    Inman BA, Frigola X, Dong H, Kwon ED.

    Current Cancer Drug Targets . 2007, 7, 15-30

  19. A Directed Protein Interaction Network for Investigating Intracellular Signal Transduction.

    Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, et al.

    Science Signaling. 2011, 4, rs8

  20. Platelet Mechanotransduction.

    Hansen CE, Qiu Y, McCarty OJT, Lam WA.

    Annual Review of Biomedical Engineering. 2018, 20, 253-275

  21. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation.

    Chen Y, Ju LA, Zhou F, Liao J, Xue L, Su QP, et al.

    Nature Materials. 2019, 18, 760-769

  22. Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line.

    Ilkan Z, Wright JR, Goodall AH, Gibbins JM, Jones CI, Mahaut-Smith MP.

    Journal of Biological Chemistry. 2017, 292, 9204-9217

  23. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production.

    Ito Y, Nakamura S, Sugimoto N, Shigemori T, Kato Y, Ohno M, et al.

    Cell. 2018, 174, 636-648

  24. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure.

    Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN.

    Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2019, 13, 97-110

  25. Platelet dense granule secretion plays a critical role in thrombosis and subsequentvascular remodeling in atherosclerotic mice.

    King SM, McNamee RA, Houng AK, Patel R, Brands M, Reed GL.

    Circulation. 2009, 120, 785-791

  26. Selective sorting of alpha-granule proteins.

    Jr JEI, Battinelli EM.

    Journal of Thrombosis and Haemostasis. 2009, 7, 173-176

  27. Clot contraction drives the translocation of procoagulant platelets to thrombus surface.

    Nechipurenko DY, Receveur N, Yakimenko AO, Shepelyuk TO, Yakusheva AA, Kerimov RR, et al.

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47

  28. Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood.

    Tutwiler V, Litvinov RI, Lozhkin AP, Peshkova AD, Lebedeva T, Ataullakhanov FI, et al.

    Blood. 2016, 127, 149-159

  29. Ristocetin-dependent, but not botrocetin-dependent, binding of von Willebrand factor to the platelet glycoprotein Ib-IX-V complex correlates with shear-dependent interactions.

    Dong JF, Berndt MC, Schade A, McIntire LV, Andrews RK, López JA.

    Blood. 2001, 97, 162-168

  30. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy.

    Nurden P, Stritt S, Favier R, Nurden AT.

    Haematologica. 2021, 106, 337-350

  31. RAP GTPases and platelet integrin signaling.

    Stefanini L, Bergmeier W.

    Platelets. 2019, 30, 41-47

  32. Talin-1 is the principal platelet Rap1 effector of integrin activation.

    Lagarrigue F, Paul DS, Gingras AR, Valadez AJ, Sun H, Lin J, et al.

    Blood. 2020, 136, 1180-1190

  33. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin.

    Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, et al.

    Journal of Cell Science. 2017, 130, 3764-3775

  34. Rap1-Rac1 circuits potentiate platelet activation.

    Stefanini L, Boulaftali Y, Ouellette TD, Holinstat M, Désiré L, Leblond B, et al.

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 434-441

  35. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9.

    Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, et al.

    JCI Insight. 2016, 1 (14), e88245

  36. he basement membrane protein nidogen-1 supports platelet adhesion and activation.

    Lakshmanan HHS, Melrose AR, Sepp A-LI, Mitrugno A, Ngo ATP, Khader A, et al.

    Platelets. 2020, 32 (3), 424-428

  37. Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation.

    Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, et al.

    Haematologica. 2018, 103, 1235-1244

  38. Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice.

    Williams CM, Li Y, Brown E, Poole AW.

    Blood Advances. 2018, 2, 3627-3636

  39. Assessment of the effects of Syk and BTK inhibitors on GPVI-mediated platelet signaling and function.

    Zheng TJ, Lofurno ER, Melrose AR, Lakshmanan HHS, Pang J, Phillips KG, et al.

    American Journal of Physiology: Cell Physiology. 2021, NaN, NaN

  40. A Flow Cytometry-Based Assay for Procoagulant Platelet Polyphosphate.

    Labberton L, Long AT, Gendler SJ, Snozek CL, Stavrou EX, Nickel KF, et al.

    Cytometry Part B: Clinical Cytometry. 2018, 94, 369-373

  41. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation.

    Suess PM, Smith SA, Morrissey JH.

    Journal of Thrombosis and Haemostasis. 2020, 18, 3043-3052

  42. Sorting machineries: how platelet-dense granules differ from α-granules.

    Chen Y, Yuan Y, Li W.

    Bioscience Reports. 2018, 38, NaN

  43. The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays.

    Leunissen TC, Wisman PP, van Holten TC, de Groot PG, Korporaal SJ, Koekman AC, et al.

    Platelets. 2017, 28, 567-575

  44. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation.

    Harper MT, Poole AW.

    Journal of Thrombosis and Haemostasis. 2010, 8, 454-462

  45. Differential role of protein kinase C delta isoform in agonist-induced dense granule secretion in human platelets.

    Murugappan S, Tuluc F, Dorsam RT, Shankar H, Kunapuli SP.

    Journal of Biological Chemistry. 2004, 279, 2360-2367

  46. Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes.

    Li X, Garrity AG, Xu H.

    Journal of Physiology. 2013, 591, 4389-4401

  47. An early endosome–derived retrograde trafficking pathway promotes secretory granule maturation.

    Ma C-IJ, Yang Y, Kim T, Chen CH, Polevoy G, Vissa M, et al.

    Journal of Cell Biology. 2020, 219, e201808017

  48. Structural analysis of resting mouse platelets by 3D-EM Reveals an unexpected variation in α-granule shape.

    Pokrovskaya I, Tobin M, Desai R, Aronova MA, Kamykowski JA, Zhang G, et al.

    Platelets. 2020, NaN, 1-10

  49. Platelet Releasate Proteome Profiling Reveals a Core Set of Proteins with Low Variance between Healthy Adults.

    Parsons MEM, Szklanna PB, Guerrero JA, Wynne K, Dervin F, O’Connell K, et al.

    Proteomics. 2018, 18, e1800219

  50. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII.

    Zakharova NV, Artemenko EO, Podoplelova NA, Sveshnikova AN, Demina IA, Ataullakhanov FI, et al.

    PloS One. 2015, 10, e0116665

  51. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli.

    Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, et al.

    Blood. 2011, 117, 3907-3911

  52. The platelet release reaction: granules’ constituents, secretion and functions.

    Rendu F, Brohard-Bohn B.

    Platelets. 2001, 12, 261-273

  53. The life cycle of platelet granules.

    Sharda A, Flaumenhaft R.

    F1000Research. 2018, 7, 236

  54. Platelet secretion: From haemostasis to wound healing and beyond.

    Golebiewska EM, Poole AW.

    Blood Reviews. 2015, 29, 153-162

  55. Platelets and platelet-derived factor Va confer hemostatic competence in complete factor V deficiency.

    Bouchard BA, Chapin J, Brummel-Ziedins KE, Durda P, Key NS, Tracy PB.

    Blood. 2015, 125, 3647-3650

  56. Coated-platelets: an emerging component of the procoagulant response.

    Dale GL.

    Journal of Thrombosis and Haemostasis. 2005, 3, 2185-2192

  57. Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates.

    Abaeva AA, Canault M, Kotova YN, Obydennyy SI, Yakimenko AO, Podoplelova NA, et al.

    Journal of Biological Chemistry. 2013, 288, 29621-29632

  58. Identification of different proaggregatory abilities of activated platelet subpopulations.

    Yakimenko AO, Verholomova FY, Kotova YN, Ataullakhanov FI, Panteleev MA.

    Biophysical Journal. 2012, 102, 2261-2269

  59. A simple, whole blood method for assessment of platelet function: application to dietary intervention.

    Allman-Farinelli MA, Bendall L, Troy J, Versluis C, Hall D, Favaloro EJ, et al.

    Thrombosis Research. 1998, 90, 163-169

  60. Close relationship between the platelet activation marker CD62 and the granular release of platelet-derived growth factor.

    Graff J, Klinkhardt U, Schini-Kerth VB, Harder S, Franz N, Bassus S, et al.

    Journal of Pharmacology and Experimental Therapeutics. 2002, 300, 952-957

  61. Different G protein-coupled signaling pathways are involved in alpha granule release from human platelets.

    Quinton TM, Murugappan S, Kim S, Jin J, Kunapuli SP.

    Journal of Thrombosis and Haemostasis. 2004, 2, 978-984

  62. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting.

    Podoplelova NA, Sveshnikova AN, Kotova YN, Eckly A, Receveur N, Nechipurenko DYu, et al.

    Blood. 2016, 128, 1745-1755

  63. Dual Mechanism of Integrin αIIbβ3 Closure in Procoagulant Platelets.

    Mattheij NJA, Gilio K, van Kruchten R, Jobe SM, Wieschhaus AJ, Chishti AH, et al.

    Journal of Biological Chemistry. 2013, 288, 13325-13336

  64. Procoagulant platelets: are they necrotic?

    Jackson SP, Schoenwaelder SM.

    Blood. 2010, 116, 2011-2018

  65. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1.

    Sveshnikova AN, Ataullakhanov FI, Panteleev MA.

    Molecular BioSystems. 2015, 11, 1052-1060

  66. Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets.

    Obydennyi SI, Artemenko EO, Sveshnikova AN, Ignatova AA, Varlamova TV, Gambaryan S, et al.

    Haematologica. 2020, 105, 1095-1106

  67. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation.

    Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN.

    Biochimica et Biophysica Acta (BBA)-General Subjects. 2015, 1850, 2518-2529

  68. Motor-driven marginal band coiling promotes cell shape change during platelet activation.

    Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K.

    Journal of Cell Biology. 2014, 204, 177-185

  69. Tubulin in Platelets: When the Shape Matters.

    Cuenca-Zamora EJ, Ferrer-Marín F, Rivera J, Teruel-Montoya R.

    International Journal of Molecular Sciences. 2019, 20, NaN

  70. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex.

    Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, et al.

    Nature Communications. 2015, 6, 7254

  71. latelet Shape Changes during Thrombus Formation: Role of Actin-Based Protrusions.

    Bender M, Palankar R.

    Hamostaseologie. 2021, 41, 14-21

  72. Platelet packing density is an independent regulator of the hemostatic response to injury.

    Mirramezani M, Herbig BA, Stalker TJ, Nettey L, Cooper M, Weisel JW, et al.

    Journal of Thrombosis and Haemostasis. 2018, 16, 973-983

  73. WASP plays a novel role in regulating platelet responses dependent on αIIbβ3 integrin outside-in signalling.

    Shcherbina A, Cooley J, Lutskiy MI, Benarafa C, Gilbert GE, Remold‐O’Donnell E.

    British Journal of Haematology. 2010, 148, 416-427

  74. Platelets, diabetes and myocardial ischemia/reperfusion injury.

    Russo I, Penna C, Musso T, Popara J, Alloatti G, Cavalot F, et al.

    Cardiovascular Diabetology. 2017, 16, NaN

  75. Thromboxane A2: Mechanisms of Synthesis and Intracellular Signaling System of Realization

    Barinov EF.

    Kardiologiia. 2016, 56, 83-90

  76. Is arachidonic acid stimulation really a test for the response to aspirin? Time to think again?

    Olechowski B, Ashby A, Mariathas M, Khanna V, Mahmoudi M, Curzen N.

    Expert Review of Cardiovascular Therapy. 2017, 15, 35-46

  77. Group VIB calcium-independent phospholipase A2 (iPLA2γ) regulates platelet activation, hemostasis and thrombosis in mice.

    Yoda E, Rai K, Ogawa M, Takakura Y, Kuwata H, Suzuki H, et al.

    PLoS One. 2014, 9, e109409

  78. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis.

    Tomaiuolo M, Brass LF, Stalker TJ.

    Interventional Cardiology Clinics. 2017, 6, 1-12

  79. The critical role of myosin IIA in platelet internal contraction.

    Johnson GJ, Leis LA, Krumwiede MD, White JG.

    Journal of Thrombosis and Haemostasis. 2007, 5, 1516-1529

  80. Calpain Cleavage of Focal Adhesion Proteins Regulates the Cytoskeletal Attachment of Integrin αIIbβ3 (Platelet Glycoprotein IIb/IIIa) and the Cellular Retraction of Fibrin Clots.

    Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP.

    Journal of Biological Chemistry. 1997, 272, 1694-1702

  81. Biphasic myosin II light chain activation during clot retraction.

    Egot M, Kauskot A, Lasne D, Gaussem P, Bachelot-Loza C.

    Thrombosis and Haemostasis. 2013, 110, 1215-1222

  82. Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke.

    Khismatullin RR, Nagaswami C, Shakirova AZ, Vrtková A, Procházka V, Gumulec J, et al.

    Stroke. 2020, 51, 3640-3650

  83. Asymmetrical Forces Dictate the Distribution and Morphology of Platelets in Blood Clots.

    Kovalenko TA, Giraud M-N, Eckly A, Ribba A-S, Proamer F, Fraboulet S, et al.

    Cells. 2021, 10, 584

  84. Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation.

    Dunster JL, Unsworth AJ, Bye AP, Haining EJ, Sowa MA, Di Y, et al.

    Journal of Thrombosis and Haemostasis. 2020, 18, 485-496

  85. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling.

    Martyanov AA, Balabin FA, Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN.

    Biophysical Journal. 2020, 118, 2641-2655

  86. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network.

    Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, et al.

    Blood. 2013, 121, 1875-1885