Русский
Библиографические ссылки статьи: “Современные подходы к моделированию тромбоза и гемостаза in vitro”
  1. Arterial thrombosis—insidious, unpredictable and deadly

    S. Jackson

    Nature Medicine. 2011, 17, 1423-1436

  2. Murine Models of Vascular Thrombosis

    R. Westrick, M. Winn, D. Eitzman

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2007, 27, 2079-2093

  3. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond

    S. Brouns, J. van Geffen, J. Heemskerk

    Platelets. 2018, 29, 662-669

  4. The use of microfluidics in hemostasis

    K. Neeves, A. Onasoga, A. Wufsus

    Current Opinion in Hematology. 2013, 20, 417-423

  5. Subcommittee on Biorheology. In vitro flow‐based assay: From simple toward more sophisticated models for mimicking hemostasis and thrombosis.

    5. Mangin PH, Neeves KB, Lam WA, Cosemans JM, Korin N, Kerrigan SW, Panteleev MA

    Journal of Thrombosis and Haemostasis. 2021, 19, 582-7

  6. In Silico Hemostasis Modeling and Prediction

    D. Nechipurenko, A. Shibeko, A. Sveshnikova, M. Panteleev

    Hämostaseologie. 2020, 40, 524-535

  7. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates

    K. NEEVES, S. MALONEY, K. FONG, A. SCHMAIER, M. KAHN, L. BRASS, S. DIAMOND

    Journal of Thrombosis and Haemostasis. 2008, 6, 2193-2201

  8. Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient

    R. Muthard, S. Diamond

    Lab on a Chip. 2013, 13, 1883

  9. Tissue‐engineered 3D microvessel and capillary network models for the study of vascular phenomena

    M. Bogorad, J. DeStefano, A. Wong, P. Searson

    Microcirculation. 2017, 24,

  10. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms

    S. Ahn, Y. Sei, H. Park, J. Kim, Y. Ryu, J. Choi, H. Sung, T. MacDonald, A. Levey, Y. Kim

    Nature Communications. 2020, 11,

  11. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues

    R. Xie, W. Zheng, L. Guan, Y. Ai, Q. Liang

    Small. 2020, 16, 1902838

  12. Bioprinted thrombosis-on-a-chip

    Y. Zhang, F. Davoudi, P. Walch, A. Manbachi, X. Luo, V. Dell'Erba, A. Miri, H. Albadawi, A. Arneri, X. Li, X. Wang, M. Dokmeci, A. Khademhosseini, R. Oklu

    Lab on a Chip. , 16, 4097-4105

  13. Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin

    M. Ahmed, V. Kaneva, S. Loyau, D. Nechipurenko, N. Receveur, M. Le Bris, E. Janus-Bell, M. Didelot, A. Rauch, S. Susen, N. Chakfé, F. Lanza, E. Gardiner, R. Andrews, M. Panteleev, C. Gachet, M. Jandrot-Perrus, P. Mangin

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2020, 40, 2127-2142

  14. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface

    D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47

  15. Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry

    M. DeCortin, L. Brass, S. Diamond

    Research and Practice in Thrombosis and Haemostasis. 2020, 4, 1158-1166

  16. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting

    N. Podoplelova, A. Sveshnikova, Y. Kotova, A. Eckly, N. Receveur, D. Nechipurenko, S. Obydennyi, I. Kireev, C. Gachet, F. Ataullakhanov, P. Mangin, M. Panteleev

    Blood. 2016, 128, 1745-1755

  17. Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow

    F. Swieringa, C. Baaten, R. Verdoold, T. Mastenbroek, N. Rijnveld, K. van der Laan, E. Breel, P. Collins, M. Lancé, Y. Henskens, J. Cosemans, J. Heemskerk, P. van der Meijden

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2016, 36, 692-699

  18. Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions

    J. Cosemans, M. Kuijpers, C. Lecut, S. Loubele, S. Heeneman, M. Jandrot-Perrus, J. Heemskerk

    Atherosclerosis. 2005, 181, 19-27

  19. Identification of platelet function defects by multi-parameter assessment of thrombus formation

    S. de Witt, F. Swieringa, R. Cavill, M. Lamers, R. van Kruchten, T. Mastenbroek, C. Baaten, S. Coort, N. Pugh, A. Schulz, I. Scharrer, K. Jurk, B. Zieger, K. Clemetson, R. Farndale, J. Heemskerk, J. Cosemans

    Nature Communications. 2014, 5,

  20. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner

    E. Westein, A. van der Meer, M. Kuijpers, J. Frimat, A. van den Berg, J. Heemskerk

    Proceedings of the National Academy of Sciences. 2013, 110, 1357-1362

  21. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation

    W. Nesbitt, E. Westein, F. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S. Jackson

    Nature Medicine. 2009, 15, 665-673

  22. Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a von Willebrand factor-dependent manner.

    Receveur, Nicolas, Dmitry Nechipurenko, Yannick Knapp, Aleksandra Yakusheva, Eric Maurer, Cécile V. Denis, François Lanza, Mikhail Panteleev, Christian Gachet, and Pierre H. Mangin.

    Haematologica. 2020, 105,

  23. Thrombin Flux and Wall Shear Rate Regulate Fibrin Fiber Deposition State during Polymerization under Flow

    K. Neeves, D. Illing, S. Diamond

    Biophysical Journal. 2010, 98, 1344-1352

  24. Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces

    A. Onasoga-Jarvis, T. Puls, S. O'Brien, L. Kuang, H. Liang, K. Neeves

    Journal of Thrombosis and Haemostasis. 2014, 12, 373-382

  25. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear

    V. Govindarajan, S. Zhu, R. Li, Y. Lu, S. Diamond, J. Reifman, A. Mitrophanov

    Biophysical Journal. 2018, 114, 978-991

  26. Dynamics of Blood Flow and Thrombus Formation in a Multi-Bypass Microfluidic Ladder Network

    J. Zilberman-Rudenko, J. Sylman, H. Lakshmanan, O. McCarty, J. Maddala

    Cellular and Molecular Bioengineering. 2017, 10, 16-29

  27. High Shear Thrombus Formation under Pulsatile and Steady Flow

    L. Casa, D. Ku

    Cardiovascular Engineering and Technology. 2014, 5, 154-163

  28. The influence of the pulsatility of the blood flow on the extent of platelet adhesion.

    Zhao XM, Wu YP, Cai HX, Wei R, Lisman T, Han JJ, Xia ZL, de Groot PG

    Thrombosis research. 2008, 121, 821-5

  29. A novel mouse-driven ex vivo flow chamber for the study of leukocyte and platelet function

    A. Hafezi-Moghadam, K. Thomas, C. Cornelssen

    American Journal of Physiology-Cell Physiology. 2004, 286, C876-C892

  30. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI–Dependent Manner in an In Vitro Venous Thrombosis Model

    M. Lehmann, R. Schoeman, P. Krohl, A. Wallbank, J. Samaniuk, M. Jandrot-Perrus, K. Neeves

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2018, 38, 1052-1062

  31. Point-of-Care Diagnostic Assays and Novel Preclinical Technologies for Hemostasis and Thrombosis

    C. Caruso, W. Lam

    Seminars in Thrombosis and Hemostasis. 2021, 47, 120-128

  32. A Microfluidic Model of Hemostasis Sensitive to Platelet Function and Coagulation

    R. Schoeman, K. Rana, N. Danes, M. Lehmann, J. Di Paola, A. Fogelson, K. Leiderman, K. Neeves

    Cellular and Molecular Bioengineering. 2017, 10, 3-15

  33. A microengineered vascularized bleeding model that integrates the principal components of hemostasis

    Y. Sakurai, E. Hardy, B. Ahn, R. Tran, M. Fay, J. Ciciliano, R. Mannino, D. Myers, Y. Qiu, M. Carden, W. Baldwin, S. Meeks, G. Gilbert, S. Jobe, W. Lam

    Nature Communications. 2018, 9,

  34. A Human Vascular Injury‐on‐a‐Chip Model of Hemostasis

    I. Poventud‐Fuentes, K. Kwon, J. Seo, M. Tomaiuolo, T. Stalker, L. Brass, D. Huh

    Small. 2021, 17, 2004889