Русский
Библиографические ссылки статьи: “Подходы к визуализации динамики микротрубочек in vitro ”
  1. Dynamic instability of microtubule growth

    T. Mitchison, M. Kirschner

    Nature. 1984, 312, 237-242

  2. Force production by disassembling microtubules

    E. Grishchuk, M. Molodtsov, F. Ataullakhanov, J. McIntosh

    Nature. 2005, 438, 384-388

  3. Regulation of microtubule dynamics, mechanics and function through the growing tip

    N. Gudimchuk, J. McIntosh

    Nature Reviews Molecular Cell Biology. 2021, 22, 777-795

  4. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography

    N. Gudimchuk, E. Ulyanov, E. O’Toole, C. Page, D. Vinogradov, G. Morgan, G. Li, J. Moore, E. Szczesna, A. Roll-Mecak, F. Ataullakhanov, J. Richard McIntosh

    Nature Communications. 2020, 11,

  5. Microtubules as a target for anticancer drugs

    M. Jordan, L. Wilson

    Nature Reviews Cancer. 2004, 4, 253-265

  6. Microtubules get a name

    Slautterback F, Ledbetter A.

    Journal of Cell Biology. 2005, 168, 852-853

  7. Microtubule structure by cryo-EM: snapshots of dynamic instability

    S. Manka, C. Moores

    Essays in Biochemistry. 2018, 62, 737-751

  8. Visualizing microtubule structural transitions and interactions with associated proteins

    E. Nogales, R. Zhang

    Current Opinion in Structural Biology. 2016, 37, 90-96

  9. Quantifying Single and Bundled Microtubules with the Polarized Light Microscope

    P. Tran, E. Salmon, R. Oldenbourg

    The Biological Bulletin. 1995, 189, 206-206

  10. Visualizing individual microtubules by bright field microscopy

    B. Gutiérrez-Medina, S. Block

    American Journal of Physics. 2010, 78, 1152-1159

  11. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy

    Christopher Gell, Volker Bormuth, Gary J. Brouhard, Daniel N. Cohen, Stefan Diez, Claire T. Friel, Jonne Helenius, Bert Nitzsche, Heike Petzold, Jan Ribbe, Erik Schäffer, Jeffrey H. Stear, Anastasiya Trushko, Vladimir Varga, Per O. Widlund, Marija Zanic, Jonathon Howard

    Methods in Cell Biology. 2010, 95, 221-245

  12. Visualization of the dynamic instability of individual microtubules by dark-field microscopy

    T. Horio, H. Hotani

    Nature. 1986, 321, 605-607

  13. Shape of microtubules in solutions

    T. Miki-Noumura, R. Kamiya

    Experimental Cell Research. 1976, 97, 451-453

  14. Dynamics of microtubules visualized by darkfield microscopy: Treadmilling and dynamic instability

    H. Hotani, T. Horio

    Cell Motility and the Cytoskeleton. 1988, 10, 229-236

  15. A Metastable Intermediate State of Microtubule Dynamic Instability That Differs Significantly between Plus and Minus Ends

    P. Tran, R. Walker, E. Salmon

    Journal of Cell Biology. 1997, 138, 105-117

  16. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances

    J. Mizushima-Sugano, T. Maeda, T. Miki-Noumura

    Biochimica et Biophysica Acta (BBA) - General Subjects. 1983, 755, 257-262

  17. Flexural Rigidity of a Single Microtubule

    T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, H. Misawa

    Japanese Journal of Applied Physics. 2002, 41, 3015-3019

  18. Dielectric Measurement of Individual Microtubules Using the Electroorientation Method

    I. Minoura, E. Muto

    Biophysical Journal. 2006, 90, 3739-3748

  19. Microtubule-Stabilizing Activity of Microtubule-Associated Proteins (MAPs) Is Due to Increase in Frequency of Rescue in Dynamic Instability: Shortening Length Decreases with Binding of MAPs onto Microtubules.

    T. Itoh, H. Hotani

    Cell Structure and Function. 1994, 19, 279-290

  20. Domains of tau Protein and Interactions with Microtubules

    N. Gustke, B. Trinczek, J. Biernat, E. Mandelkow, E. Mandelkow

    Biochemistry. 1994, 33, 9511-9522

  21. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy

    Spector JO, Vemu A, Roll-Mecak A.

    Methods in Molecular Biology. 2020, 2101, 39-51

  22. Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of allogromia laticollaris

    R. Allen, J. Travis, N. Allen, H. Yilmaz

    Cell Motility. 1981, 1, 275-289

  23. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris

    R. Allen, N. Allen, J. Travis

    Cell Motility. 1981, 1, 291-302

  24. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy.

    S. Inoué

    Journal of Cell Biology. 1981, 89, 346-356

  25. VE-DIC light microscopy and the discovery of kinesin

    E. Salmon

    Trends in Cell Biology. 1995, 5, 154-158

  26. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.

    R. Walker, E. O'Brien, N. Pryer, M. Soboeiro, W. Voter, H. Erickson, E. Salmon

    Journal of Cell Biology. 1988, 107, 1437-1448

  27. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro

    Walker RA, Inoué S, Salmon ED.

    Collected Works of Shinya Inoué. 2008, 108, 649-56

  28. In vitro assembled plant microtubules exhibit a high state of dynamic instability

    R. Moore, M. Zhang, L. Cassimeris, R. Cyr

    Cell Motility and the Cytoskeleton. 1997, 38, 278-286

  29. Effects of magnesium on the dynamic instability of individual microtubules

    E. O'Brien, E. Salmon, R. Walker, H. Erickson

    Biochemistry. 1990, 29, 6648-6656

  30. Doublecortin, a Stabilizer of Microtubules

    D. Horesh, T. Sapir, F. Francis, S. Grayer Wolf, M. Caspi, M. Elbaum, J. Chelly, O. Reiner

    Human Molecular Genetics. 1999, 8, 1599-1610

  31. Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate

    T. Müller-Reichert, D. Chrétien, F. Severin, A. Hyman

    Proceedings of the National Academy of Sciences. 1998, 95, 3661-3666

  32. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover.

    R. Vasquez, D. Gard, L. Cassimeris

    Journal of Cell Biology. 1994, 127, 985-993

  33. Stu2, the Budding Yeast XMAP215/Dis1 Homolog, Promotes Assembly of Yeast Microtubules by Increasing Growth Rate and Decreasing Catastrophe Frequency

    M. Podolski, M. Mahamdeh, J. Howard

    Journal of Biological Chemistry. 2014, 289, 28087-28093

  34. Reconstitution of Physiological Microtubule Dynamics Using Purified Components

    K. Kinoshita, I. Arnal, A. Desai, D. Drechsel, A. Hyman

    Science. 2001, 294, 1340-1343

  35. Flexural Rigidity of Individual Microtubules Measured by a Buckling Force with Optical Traps

    M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro

    Biophysical Journal. 2006, 90, 1687-1696

  36. THE MECHANISM OF ADHESION OF CELLS TO GLASS

    A. Curtis

    Journal of Cell Biology. 1964, 20, 199-215

  37. Label-free and live cell imaging by interferometric scattering microscopy

    J. Park, I. Lee, H. Moon, J. Joo, K. Kim, S. Hong, M. Cho

    Chemical Science. 2018, 9, 2690-2697

  38. Self-repair protects microtubules from destruction by molecular motors

    S. Triclin, D. Inoue, J. Gaillard, Z. Htet, M. DeSantis, D. Portran, E. Derivery, C. Aumeier, L. Schaedel, K. John, C. Leterrier, S. Reck-Peterson, L. Blanchoin, M. Théry

    Nature Materials. 2021, 20, 883-891

  39. Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules

    Mahamdeh M, Howard J

    J. Vis. Exp. 2019, 2019, 1-8

  40. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy

    M. MAHAMDEH, S. SIMMERT, A. LUCHNIAK, E. SCHÄFFER, J. HOWARD

    Journal of Microscopy. 2018, 272, 60-66

  41. Imaging Dynamic Microtubules and Associated Proteins by Simultaneous Interference-Reflection and Total-Internal-Reflection-Fluorescence Microscopy

    Tuna, Yazgan & Al-Hiyasat, Amer & Howard, Jonathon

    . 2022, ,

  42. Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules

    Y. Kuo, O. Trottier, M. Mahamdeh, J. Howard

    Proceedings of the National Academy of Sciences. 2019, 116, 5533-5541

  43. The force required to remove tubulin from the microtubule lattice

    Kuo Y-W, Mahamdeh M, Tuna Y, Howard J

    BioRxiv. 2022, ,

  44. Single depolymerizing and transport kinesins stabilize microtubule ends

    A. Ciorîță, M. Bugiel, S. Sudhakar, E. Schäffer, A. Jannasch

    Cytoskeleton. 2021, 78, 177-184

  45. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics

    J. Chen, E. Kholina, A. Szyk, V. Fedorov, I. Kovalenko, N. Gudimchuk, A. Roll-Mecak

    Developmental Cell. 2021, 56, 2016-2028.e4

  46. Measurements and simulations of microtubule growth imply strong longitudinal interactions and reveal a role for GDP on the elongating end

    J. Cleary, T. Kim, A. Cook, W. Hancock, L. Rice

    Biophysical Journal. 2022, 121, 521a

  47. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization

    A. Molines, J. Lemière, M. Gazzola, I. Steinmark, C. Edrington, C. Hsu, P. Real-Calderon, K. Suhling, G. Goshima, L. Holt, M. Thery, G. Brouhard, F. Chang

    Developmental Cell. 2022, 57, 466-479.e6

  48. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution

    C. Akıl, S. Ali, L. Tran, J. Gaillard, W. Li, K. Hayashida, M. Hirose, T. Kato, A. Oshima, K. Fujishima, L. Blanchoin, A. Narita, R. Robinson

    Science Advances. 2022, 8,

  49. Measuring microtubule dynamics

    A. Zwetsloot, G. Tut, A. Straube

    Essays in Biochemistry. 2018, 62, 725-735

  50. Self-repair promotes microtubule rescue

    C. Aumeier, L. Schaedel, J. Gaillard, K. John, L. Blanchoin, M. Théry

    Nature Cell Biology. 2016, 18, 1054-1064

  51. Localized Mechanical Stress Promotes Microtubule Rescue

    H. de Forges, A. Pilon, I. Cantaloube, A. Pallandre, A. Haghiri-Gosnet, F. Perez, C. Poüs

    Current Biology. 2016, 26, 3399-3406

  52. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation

    A. Vemu, E. Szczesna, E. Zehr, J. Spector, N. Grigorieff, A. Deaconescu, A. Roll-Mecak

    Science. 2018, 361,

  53. A microtubule bestiary: structural diversity in tubulin polymers

    S. Chaaban, G. Brouhard

    Molecular Biology of the Cell. 2017, 28, 2924-2931

  54. Structural heterogeneity of the microtubule lattice

    Guyomar C, Ku S, Heumann J, Bousquet C, Guilloux G, Gaillard N, et al

    BioRxiv. 2021, ,

  55. Lattice defects induce microtubule self-renewal

    L. Schaedel, S. Triclin, D. Chrétien, A. Abrieu, C. Aumeier, J. Gaillard, L. Blanchoin, M. Théry, K. John

    Nature Physics. 2019, 15, 830-838

  56. Microtubules self-repair in response to mechanical stress

    L. Schaedel, K. John, J. Gaillard, M. Nachury, L. Blanchoin, M. Théry

    Nature Materials. 2015, 14, 1156-1163

  57. Kinetics of microtubule catastrophe assessed by probabilistic analysis

    D. Odde, L. Cassimeris, H. Buettner

    Biophysical Journal. 1995, 69, 796-802

  58. Depolymerizing Kinesins Kip3 and MCAK Shape Cellular Microtubule Architecture by Differential Control of Catastrophe

    M. Gardner, M. Zanic, C. Gell, V. Bormuth, J. Howard

    Cell. 2011, 147, 1092-1103

  59. Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes

    A. Rai, T. Liu, E. Katrukha, J. Estévez-Gallego, S. Manka, I. Paterson, J. Díaz, L. Kapitein, C. Moores, A. Akhmanova

    Proceedings of the National Academy of Sciences. 2021, 118,

  60. Mechanism and Dynamics of Breakage of Fluorescent Microtubules

    H. Guo, C. Xu, C. Liu, E. Qu, M. Yuan, Z. Li, B. Cheng, D. Zhang

    Biophysical Journal. 2006, 90, 2093-2098

  61. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    F. Jünger, P. Olshausen, A. Rohrbach

    Scientific Reports. 2016, 6,

  62. Scattering-based Light Microscopy: From Metal Nanoparticles to Single Proteins

    L. Priest, J. Peters, P. Kukura

    Chemical Reviews. 2021, 121, 11937-11970

  63. Label-free Imaging and Bending Analysis of Microtubules by ROCS Microscopy and Optical Trapping

    M. Koch, A. Rohrbach

    Biophysical Journal. 2018, 114, 168-177

  64. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy

    J. Ortega-Arroyo, P. Kukura

    Physical Chemistry Chemical Physics. 2012, 14, 15625

  65. Label-Free, All-Optical Detection, Imaging, and Tracking of a Single Protein

    J. Ortega Arroyo, J. Andrecka, K. Spillane, N. Billington, Y. Takagi, J. Sellers, P. Kukura

    Nano Letters. 2014, 14, 2065-2070

  66. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy

    J. Andrecka, J. Ortega Arroyo, K. Lewis, R. Cross, P. Kukura

    Biophysical Journal. 2016, 110, 214-217

  67. The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability

    J. Roostalu, C. Thomas, N. Cade, S. Kunzelmann, I. Taylor, T. Surrey

    eLife. 2020, 9,

  68. Direct observation of individual tubulin dimers binding to growing microtubules

    K. Mickolajczyk, E. Geyer, T. Kim, L. Rice, W. Hancock

    Proceedings of the National Academy of Sciences. 2019, 116, 7314-7322

  69. Nanoscopic Structural Fluctuations of Disassembling Microtubules Revealed by Label‐Free Super‐Resolution Microscopy

    M. Vala, Ł. Bujak, A. García Marín, K. Holanová, V. Henrichs, M. Braun, Z. Lánský, M. Piliarik

    Small Methods. 2021, 5, 2000985

  70. Atomic force microscopy reveals distinct protofilament-scale structural dynamics in depolymerizing microtubule arrays

    S. Wijeratne, M. Marchan, J. Tresback, R. Subramanian

    Proceedings of the National Academy of Sciences. 2022, 119,

  71. Atomic Force Microscope

    G. Binnig, C. Quate, C. Gerber

    Physical Review Letters. 1986, 56, 930-933

  72. Imaging modes of atomic force microscopy for application in molecular and cell biology

    Y. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, D. Müller

    Nature Nanotechnology. 2017, 12, 295-307

  73. Application of AFM in microbiology: a review

    S. Liu, Y. Wang

    Scanning. 2010, 32, 61-73

  74. Force measurements with the atomic force microscope: Technique, interpretation and applications

    H. Butt, B. Cappella, M. Kappl

    Surface Science Reports. 2005, 59, 1-152

  75. High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6

    A. Nievergelt, N. Banterle, S. Andany, P. Gönczy, G. Fantner

    Nature Nanotechnology. 2018, 13, 696-701

  76. Probing nanomechanical properties from biomolecules to living cells

    S. Kasas, G. Dietler

    Pflügers Archiv - European Journal of Physiology. 2008, 456, 13-27

  77. Immobilizing and imaging microtubules by atomic force microscopy

    A. Vinckier, I. Heyvaert, A. D'Hoore, T. McKittrick, C. Van Haesendonck, Y. Engelborghs, L. Hellemans

    Ultramicroscopy. 1995, 57, 337-343

  78. Nanomechanics of Microtubules

    A. Kis, S. Kasas, B. Babić, A. Kulik, W. Benoît, G. Briggs, C. Schönenberger, S. Catsicas, L. Forró

    Physical Review Letters. 2002, 89,

  79. Deformation and Collapse of Microtubules on the Nanometer Scale

    P. de Pablo, I. Schaap, F. MacKintosh, C. Schmidt

    Physical Review Letters. 2003, 91,

  80. Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation

    I. Schaap, C. Carrasco, P. de Pablo, F. MacKintosh, C. Schmidt

    Biophysical Journal. 2006, 91, 1521-1531

  81. Enhanced Mechanical Stability of Microtubules Polymerized with a Slowly Hydrolyzable Nucleotide Analogue

    K. Munson, P. Mulugeta, Z. Donhauser

    The Journal of Physical Chemistry B. 2007, 111, 5053-5057

  82. Faster high-speed atomic force microscopy for imaging of biomolecular processes

    S. Fukuda, T. Ando

    Review of Scientific Instruments. 2021, 92, 033705

  83. Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging

    C. Ganser, T. Uchihashi

    Nanoscale. 2019, 11, 125-135

  84. Phase diagram of microtubules

    D. Fygenson, E. Braun, A. Libchaber

    Physical Review E. 1994, 50, 1579-1588

  85. Dynamic Instability of Microtubules Assembled from Microtubule-Associated Protein-Free Tubulin:  Neither Variability of Growth and Shortening Rates nor “Rescue” Requires Microtubule-Associated Proteins

    M. Billger, G. Bhatacharjee, R. Williams

    Biochemistry. 1996, 35, 13656-13663

  86. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro

    B. Vitre, F. Coquelle, C. Heichette, C. Garnier, D. Chrétien, I. Arnal

    Nature Cell Biology. 2008, 10, 415-421

  87. Islands Containing Slowly Hydrolyzable GTP Analogs Promote Microtubule Rescues

    C. Tropini, E. Roth, M. Zanic, M. Gardner, J. Howard

    PLoS ONE. 2012, 7, e30103

  88. A unified model for microtubule rescue

    C. Fees, J. Moore

    Molecular Biology of the Cell. 2019, 30, 753-765

  89. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates.

    D. Chrétien, S. Fuller, E. Karsenti

    Journal of Cell Biology. 1995, 129, 1311-1328

  90. How Tubulin Subunits Are Lost from the Shortening Ends of Microtubules

    P. Tran, P. Joshi, E. Salmon

    Journal of Structural Biology. 1997, 118, 107-118

  91. CLASP Promotes Microtubule Rescue by Recruiting Tubulin Dimers to the Microtubule

    J. Al-Bassam, H. Kim, G. Brouhard, A. van Oijen, S. Harrison, F. Chang

    Developmental Cell. 2010, 19, 245-258

  92. 13(th) EBSA congress, July 24-28, 2021, Vienna, Austria

    European Biophysics Journal. 2021, 50, 1-226

  93. Quantification of microtubule stutters: dynamic instability behaviors that are strongly associated with catastrophe

    S. Mahserejian, J. Scripture, A. Mauro, E. Lawrence, E. Jonasson, K. Murray, J. Li, M. Gardner, M. Alber, M. Zanic, H. Goodson

    Molecular Biology of the Cell. 2022, 33,

  94. Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy

    A. Demchouk, M. Gardner, D. Odde

    Cellular and Molecular Bioengineering. 2011, 4, 192-204