Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные взаимоотношения. Часть 2: Рецепторы.

Введение
Тромбоциты - клетки крови, играющие ключевую роль в процессе остановки кровотечения
Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion
M. Panteleev, N. Dashkevich, F. Ataullakhanov
Thrombosis Research. 2015, 136, 699-711
Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition
T. Getz, R. Piatt, B. Petrich, D. Monroe, N. Mackman, W. Bergmeier
Journal of Thrombosis and Haemostasis. 2015, 13, 417-425
Platelets and vascular integrity
C. Deppermann
Platelets. 2018, 29, 549-555
Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor
A. Martyanov, V. Kaneva, M. Panteleev, A. Sveshnikova
Oncohematology. 2018, 13, 83-90
How platelets safeguard vascular integrity
B. HO-TIN-NOÉ, M. DEMERS, D. WAGNER
Journal of Thrombosis and Haemostasis. 2011, 9, 56-65
Platelet ITAM signaling is critical for vascular integrity in inflammation
Yacine Boulaftali, Paul R. Hess, Todd M. Getz, Agnieszka Cholka, Moritz Stolla, Nigel Mackman, A. Phillip Owens III, Jerry Ware, Mark L. Kahn, Wolfgang Bergmeier
The Journal of Clinical Investigation. 2013, 123 (2), 908-916
Editorial: Platelets and Immune Responses During Thromboinflammation
M. Schattner, C. Jenne, S. Negrotto, B. Ho-Tin-Noe
Frontiers in Immunology. 2020, 11, None
The dual role of platelet-innate immune cell interactions in thrombo-inflammation
J. Rayes, J. Bourne, A. Brill, S. Watson
Research and Practice in Thrombosis and Haemostasis. 2020, 4, 23-35
Lipopolysaccharide Signaling without a Nucleus: Kinase Cascades Stimulate Platelet Shedding of Proinflammatory IL-1β–Rich Microparticles
G. Brown, T. McIntyre
The Journal of Immunology. 2011, 186, 5489-5496
Platelet functional responses and signalling: the molecular relationship. Part 1: responses.
A. Sveshnikova, M. Stepanyan, M. Panteleev
Systems Biology and Physiology Reports. 2021, 1, 20-28
Первым ответом тромбоцита на встречу с активатором является изменение формы:
дисковидные клетки значительно увеличивают площадь своей поверхности за счет «вызволения» мембраны, сложенной внутри в виде открытой канальцевой системы
Platelets: production, morphology and ultrastructure
Thon JN, Italiano JE
Handbook of Experimental Pharmacology. 2012, None, 3-22
Platelet shape change and spreading
Aslan JE, Itakura A, Gertz JM, McCarty OJT
Methods in Molecular Biology. 2012, 788, 91-100
Tubulin in Platelets: When the Shape Matters
E. Cuenca-Zamora, F. Ferrer-Marín, J. Rivera, R. Teruel-Montoya
International Journal of Molecular Sciences. 2019, 20, 3484
New explanations for old observations: marginal band coiling during platelet activation
K. Sadoul
Journal of Thrombosis and Haemostasis. 2015, 13, 333-346
Actin dynamics in platelets
Bearer EL, Prakash JM, Li Z.
International Review of Cytology. 2002, 217, 137-82
Platelet shape change and spreading
Aslan JE, Itakura A, Gertz JM, McCarty OJT
Methods in Molecular Biology. 2012, 788, 91-100
Platelet shape change and spreading
Aslan JE, Itakura A, Gertz JM, McCarty OJT
Methods in Molecular Biology. 2012, 788, 91-100
Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs
E. Shin, H. Park, J. Noh, K. Lim, J. Chung
Biomolecules & Therapeutics. 2017, 25, 223-230
Возможно, ключевым функциональным ответом тромбоцита является переход в проагрегантное состояние, при котором тромбоцитарные интегрины αIIbβ3
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis
M. Tomaiuolo, L. Brass, T. Stalker
Interventional Cardiology Clinics. 2017, 6, 1-12
RAP GTPases and platelet integrin signaling
L. Stefanini, W. Bergmeier
Platelets. 2019, 30, 41-47
Важным функциональным ответом тромбоцита является дегрануляция
Platelet functional responses and signalling: the molecular relationship. Part 1: responses.
A. Sveshnikova, M. Stepanyan, M. Panteleev
Systems Biology and Physiology Reports. 2021, 1, 20-28
Platelet Secretion. In: Michelson AD, editor. Platelets (Fourth Edition)
Flaumenhaft R, Sharda A
Academic Press. 2019, None, 349-70
Sorting machineries: how platelet-dense granules differ from α-granules
Y. Chen, Y. Yuan, W. Li
Bioscience Reports. 2018, 38, None
Platelet functional responses and signalling: the molecular relationship. Part 1: responses.
A. Sveshnikova, M. Stepanyan, M. Panteleev
Systems Biology and Physiology Reports. 2021, 1, 20-28
В некоторых условиях, например, при двойной стимуляции тромбоцитов тромбином и коллагеном, происходит митохондриально-зависимый некроз субпопоуляции тромбоцитов, которые при этом теряют способность к агрегации, экспонируют отрицательно заряженный фосфолипид фосфатидилсерин, который является одним из посадочных сайтов для комплексов теназы и протромбиназы, что значительно ускоряет работы каскада свертывания плазмы крови
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Procoagulant Platelets Form an α-Granule Protein-covered “Cap” on Their Surface That Promotes Their Attachment to Aggregates
A. Abaeva, M. Canault, Y. Kotova, S. Obydennyy, A. Yakimenko, N. Podoplelova, V. Kolyadko, H. Chambost, A. Mazurov, F. Ataullakhanov, A. Nurden, M. Alessi, M. Panteleev
Journal of Biological Chemistry. 2013, 288, 29621-29632
Regulating thrombus growth and stability to achieve an optimal response to injury
L. BRASS, K. WANNEMACHER, P. MA, T. STALKER
Journal of Thrombosis and Haemostasis. 2011, 9, 66-75
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface
D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev
Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47

Огромная сеть рецепторов и путей передачи сигналов тромбоцитов регулирует реализацию перечисленных функций ровно в том месте и в тот момент времени, когда это необходимо
Platelet functional responses and signalling: the molecular relationship. Part 1: responses.
A. Sveshnikova, M. Stepanyan, M. Panteleev
Systems Biology and Physiology Reports. 2021, 1, 20-28

Вторичные мессенджеры в тромбоцитах
Рецепторная сеть тромбоцитов может быть грубо разделена на несколько подсетей, каждая из которых управляется своим набором вторичных мессенджеров, которые, в некоторых случаях, могут перекликаться. Можно утверждать, что вторичные мессенджеры находятся в центре внутриклеточной сигнализации: они «собирают» информацию с рецепторов и «передают» ее функциональным системам. Поэтому в настоящей статье мы рассмотрим, как именно регулируется концентрация вторичных мессенджеров в тромбоците. При этом следует не забывать о том, что тромбоцит – безъядерная клетка, т.е. регуляции, ведущей к синтезу белка у нее нет. Далее мы кратко перечислим основные вторичные мессенджеры тромбоцита.
Согласно мнению многих исследователей \cite[27, 28, 29}, с которым мы согласны, ключевым вторичным мессенджером в тромбоците являются свободные ионы кальция цитозоле. В покое она поддерживается низкой мембранными АТФазами PMCA и SERCA (sarcoplasmic/endoplasmic reticulum calcium ATPase)
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling
A. Martyanov, F. Balabin, J. Dunster, M. Panteleev, J. Gibbins, A. Sveshnikova
Biophysical Journal. 2020, 118, 2641-2655
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation
S. Obydennyy, A. Sveshnikova, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 1867-1881
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1
A. Sveshnikova, F. Ataullakhanov, M. Panteleev
Molecular BioSystems. 2015, 11, 1052-1060
Calcium signaling in platelets
D. VARGA-SZABO, A. BRAUN, B. NIESWANDT
Journal of Thrombosis and Haemostasis. 2009, 7, 1057-1066
Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets
S. Obydennyi, E. Artemenko, A. Sveshnikova, A. Ignatova, T. Varlamova, S. Gambaryan, G. Lomakina, N. Ugarova, I. Kireev, F. Ataullakhanov, G. Novichkova, A. Maschan, A. Shcherbina, M. Panteleev
Haematologica. 2020, 105, 1095-1106
В то время как основным хранилищем для ионов кальция в тромбоцитах является эндоплазматический ретикулум, при кальциевых спайках также может происходить закачивание кальция в митохондрии тромбоцитов через кальциевый унипортер. Кальций также может откачиваться из митохондрий через насос NCLX
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol
A. Södergren, S. Ramström
Scientific Reports. 2018, 8, None
Программируемая клеточная смерть и функциональная активность тромбоцитов при онкогематологических заболеваниях
А. Мартьянов, А. Игнатова, Г. Свидельская, Е. Пономаренко, С. Гамбарян, А. Свешникова, М. Пантелеев
Биохимия. 2020, 85, 1489-1499
Expression, Purification, and Regulation of Two Isoforms of the Inositol 1,4,5-Trisphosphate 3-Kinase
P. Woodring, J. Garrison
Journal of Biological Chemistry. 1997, 272, 30447-30454
IP3 также считается вторичным мессенджером, так как образуется в результате активности фосфолипазы С вместе с диацилглицеролом из мембранного фосфолипида, фосфоинозитид-4,5-бисфосфата (phosphoinositide-4,5-bisphosphate, PIP2). Интересно, что концентрация IP3 в цитозоле тромбоцита зависит еще и от активности фермента IP3-3-киназы (IP3K)
Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes
M. De Pittà, M. Goldberg, V. Volman, H. Berry, E. Ben-Jacob
Journal of Biological Physics. 2009, 35, 383-411
Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations
H. XIA, G. YANG
Cell Research. 2005, 15, 83-91
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations
F. Balabin, A. Sveshnikova
Mathematical Biosciences. 2016, 276, 67-74
Regulation of platelet plug formation by phosphoinositide metabolism
S. Min, C. Abrams
Blood. 2013, 122, 1358-1365
Сопоставимым по важности с кальцием вторичным мессенджером является мембранная концентрация фосфолипида фосфоинозитид-3,4,5-трифосфата (phosphoinositide-3,4,5-trisphosphate, PIP3). Фосфорилированные остатки инозитида – фосфоинозитиды – составляют 10-15% липидного состава внутреннего слоя плазматической мембраны тромбоцитов
Platelet Signal Transduction. In: Michelson AD, editor. Platelets (Fourth Edition)
Lee RH, Stefanini L, Bergmeier W.
Academic Press. 2019, None, 329-48
Platelet Signal Transduction. In: Michelson AD, editor. Platelets (Fourth Edition)
Lee RH, Stefanini L, Bergmeier W.
Academic Press. 2019, None, 329-48
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Platelets lacking PIP5KIγ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion
Y. Wang, L. Zhao, A. Suzuki, L. Lian, S. Min, Z. Wang, R. Litvinov, T. Stalker, T. Yago, A. Klopocki, D. Schmidtke, H. Yin, J. Choi, R. McEver, J. Weisel, J. Hartwig, C. Abrams
Blood. 2013, 121, 2743-2752
The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis
C. Valet, S. Severin, G. Chicanne, P. Laurent, F. Gaits-Iacovoni, M. Gratacap, B. Payrastre
Advances in Biological Regulation. 2016, 61, 33-41
Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy
A. Moroi, S. Watson
Biochemical Pharmacology. 2015, 94, 186-194
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Different roles of SHIP1 according to the cell context: The example of blood platelets
M. Gratacap, S. Séverin, G. Chicanne, M. Plantavid, B. Payrastre
Advances in Enzyme Regulation. 2008, 48, 240-252
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels
S. GIURIATO, X. PESESSE, S. BODIN, T. SASAKI, C. VIALA, E. MARION, J. PENNINGER, S. SCHURMANS, C. ERNEUX, B. PAYRASTRE
Biochemical Journal. 2003, 376, 199-207
Deficiency of Src homology 2 domain–containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth
S. Séverin, M. Gratacap, N. Lenain, L. Alvarez, E. Hollande, J. Penninger, C. Gachet, M. Plantavid, B. Payrastre
Journal of Clinical Investigation. 2007, 117, 944-952
Effects of bacterial lipopolysaccharides on platelet function: inhibition of weak platelet activation
A. Martyanov, A. Maiorov, A. Filkova, A. Ryabykh, G. Svidelskaya, E. Artemenko, S. Gambaryan, M. Panteleev, A. Sveshnikova
Scientific Reports. 2020, 10, None
Последним промежуточным посредником активации, а, точнее, ингибирования тромбоцита является концентрация в цитозоле циклических нуклеотидов – cAMP и cGMP
GMP and cGMP-dependent protein kinase in platelets and blood cells
Walter U, Gambaryan S
Handbook of Experimental Pharmacology. 2009, None, 533-48
A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?
S. Gambaryan, D. Tsikas
Amino Acids. 2015, 47, 1779-1793
A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?
S. Gambaryan, D. Tsikas
Amino Acids. 2015, 47, 1779-1793
A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation
M. Mischnik, D. Boyanova, K. Hubertus, J. Geiger, N. Philippi, M. Dittrich, G. Wangorsch, J. Timmer, T. Dandekar
Molecular BioSystems. 2013, 9, 1326
Activation of Platelet Function Through G Protein–Coupled Receptors
S. Offermanns
Circulation Research. 2006, 99, 1293-1304
GMP and cGMP-dependent protein kinase in platelets and blood cells
Walter U, Gambaryan S
Handbook of Experimental Pharmacology. 2009, None, 533-48
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Рецепторы, ассоциированные с G-белками
Примерно половину тромбоцитарных рецепторов составляют рецепторы-серпентины, иначе называемые 7TM-рецепторы или рецепторы, ассоциированные с G-белками (G-protein coupled receptors, GPCR)
Kinetic diversity in G-protein-coupled receptor signalling
V. Katanaev, M. Chornomorets
Biochemical Journal. 2007, 401, 485-495
Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector
F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross
Current Biology. 2010, 20, 1327-1335
A quantitative characterization of the yeast heterotrimeric G protein cycle
T. Yi, H. Kitano, M. Simon
Proceedings of the National Academy of Sciences. 2003, 100, 10764-10769
Receptor-Mediated Activation of Heterotrimeric G-Proteins in Living Cells
C. Janetopoulos
Science. 2001, 291, 2408-2411
A Direct and Functional Interaction Between Go and Rab5 During G Protein-Coupled Receptor Signaling
V. Purvanov, A. Koval, V. Katanaev
Science Signaling. 2010, 3, ra65-ra65
Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector
F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross
Current Biology. 2010, 20, 1327-1335
Double Suppression of the Gα Protein Activity by RGS Proteins
C. Lin, A. Koval, S. Tishchenko, A. Gabdulkhakov, U. Tin, G. Solis, V. Katanaev
Molecular Cell. 2014, 53, 663-671
High capacity in G protein-coupled receptor signaling
A. Keshelava, G. Solis, M. Hersch, A. Koval, M. Kryuchkov, S. Bergmann, V. Katanaev
Nature Communications. 2018, 9, None
G PROTEIN βγ SUBUNITS
D. Clapham, E. Neer
Annual Review of Pharmacology and Toxicology. 1997, 37, 167-203
Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors
E. Hermans
Pharmacology & Therapeutics. 2003, 99, 25-44
Bifurcation of Lipid and Protein Kinase Signals of PI3K to the Protein Kinases PKB and MAPK
T. Bondeva
Science. 1998, 282, 293-296
В связи с важностью кальциевой сигнализации, мы начнем с фосфолипазы Cβ (phospholipase C, PLCβ), которая гидролизует PIP2 до инозитол 3,4,5 трифосфата (IP3) и диацилглицерола (DAG). Активация PLCβ состоит в ее локализации у плазматической мембраны и субстратов
Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector
F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross
Current Biology. 2010, 20, 1327-1335
The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C
P. Goldschmidt-Clermont, L. Machesky, J. Baldassare, T. Pollard
Science. 1990, 247, 1575-1578
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
A quantitative characterization of the yeast heterotrimeric G protein cycle
T. Yi, H. Kitano, M. Simon
Proceedings of the National Academy of Sciences. 2003, 100, 10764-10769
Structure, Function, and Control of Phosphoinositide-Specific Phospholipase C
M. Rebecchi, S. Pentyala
Physiological Reviews. 2000, 80, 1291-1335
Catalysis by Phospholipase C δ1 Requires That Ca2+ Bind to the Catalytic Domain, but Not the C2 Domain
J. Grobler, J. Hurley
Biochemistry. 1998, 37, 5020-5028
Catalysis by Phospholipase C δ1 Requires That Ca2+ Bind to the Catalytic Domain, but Not the C2 Domain
J. Grobler, J. Hurley
Biochemistry. 1998, 37, 5020-5028
Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits
Lee SB, Shin SH, Hepler JR, Gilman AG, Rhee SG.
Journal of Biological Chemistry. 1993, 268, 25952–7
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Protein Kinase C in Oncogenic Transformation and Cell Polarity. In: Kramer IjM, editor. Signal Transduction (Third Edition)
Kramer IjM.
Boston: Academic Press. 2016, None, 529–88
Purification and characterization of cytosolic diacylglycerol kinases of human platelets.
Y. Yada, T. Ozeki, H. Kanoh, Y. Nozawa
Journal of Biological Chemistry. 1990, 265, 19237-19243
Purification and characterization of cytosolic diacylglycerol kinases of human platelets.
Y. Yada, T. Ozeki, H. Kanoh, Y. Nozawa
Journal of Biological Chemistry. 1990, 265, 19237-19243
Heterodimeric Phosphoinositide 3-Kinase Consisting of p85 and p110β Is Synergistically Activated by the βγ Subunits of G Proteins and Phosphotyrosyl Peptide
H. Kurosu, T. Maehama, T. Okada, T. Yamamoto, S. Hoshino, Y. Fukui, M. Ui, O. Hazeki, T. Katada
Journal of Biological Chemistry. 1997, 272, 24252-24256
Вторым ферментом, активируемым G-белками, мы назовем фосфоинозитид-3-киназу типа γ (PI3Kγ). Наиболее охарактеризованными членами семейства PI3K являются PI3K класса I, которые представляют собой гетеродимерные белки: они состоят из каталитической субъединицы (p110α, p110β или p110δ), связанной с SH2-содержащей регуляторной субъединицей (пять вариантов, среди которых p85α является наиболее распространенным). Среди перечисленных субъединиц, p110β ассоциируется с плазматической мембраной через субъединицы Gβγ. PI3K класса IB (PI3Kγ) состоит из каталитической субъединицы p110γ, связанной с регуляторной субъединицей (p84), которая также активируется путем связывания с субъединицей Gβγ
Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets
M Bauer, M Retzer, J I Wilde, P Maschberger, M Essler, M Aepfelbacher, S P Watson, W Siess
Blood. 1999, None, 1665–72
RAP GTPases and platelet integrin signaling
L. Stefanini, W. Bergmeier
Platelets. 2019, 30, 41-47
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
G12/13-белок активирует RhoA (GTPases Ras homolog gene family, member A) и Rho-киназы. Активированная Rho-киназа стимулирует фосфорилирование легких цепей миозина MLC (Myosin Light Chain)
Platelet Adenylyl Cyclase Activity: A Biological Marker for Major Depression and Recent Drug Use
L. Hines, B. Tabakoff
Biological Psychiatry. 2005, 58, 955-962
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Последний белок, активность которого в тромбоцитах управляется G-белками, как ни парадоксально – аденилатциклаза (AC)
G-Protein–Coupled Receptors Signaling Pathways in New Antiplatelet Drug Development
P. Gurbel, A. Kuliopulos, U. Tantry
Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 500-512
Fueling Platelets
S. Whiteheart
Arteriosclerosis, Thrombosis, and Vascular Biology. 2017, 37, 1592-1594
Signaling through Gi Family Members in Platelets
J. Yang, J. Wu, H. Jiang, R. Mortensen, S. Austin, D. Manning, D. Woulfe, L. Brass
Journal of Biological Chemistry. 2002, 277, 46035-46042
G-Protein Coupled Receptor Resensitization - Appreciating the Balancing Act of Receptor Function
M. L. Mohan, N. T. Vasudevan, M. K. Gupta, E. E. Martelli, S. V. Naga Prasad
Current Molecular Pharmacology. 2013, 5, 350-361
Одной из интересных особенностей GPCR-рецепторов является возможность их десенсетизации в результате контакта с активатором
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Domains specifying thrombin–receptor interaction
T. Vu, V. Wheaton, D. Hung, I. Charo, S. Coughlin
Nature. 1991, 353, 674-677
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Domains specifying thrombin–receptor interaction
T. Vu, V. Wheaton, D. Hung, I. Charo, S. Coughlin
Nature. 1991, 353, 674-677
Активация тромбоцитов тромбином
Тромбин является одним из основных активаторов тромбоцитов и главным ферментом системы свертывания крови. Тромбин действует на тромбоциты в первую очередь за счет связывания с PAR (Protease-Activated Receptors). На поверхности тромбоцитов имеется два вида ассоциированных с G-белками рецептора, PAR1 и PAR4 у человека, и PAR3 и PAR4 у мышей. Тромбин отрезает небольшой олигопептид от N-конца этих рецепторов, который и является лигандом соответствующего рецептора
RhoA downstream of Gq and G12/13 pathways regulates protease-activated receptor-mediated dense granule release in platelets
J. Jin, Y. Mao, D. Thomas, S. Kim, J. Daniel, S. Kunapuli
Biochemical Pharmacology. 2009, 77, 835-844
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Primary haemostasis: newer insights
M. Berndt, P. Metharom, R. Andrews
Haemophilia. 2014, 20, 15-22
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Известно, что тромбин может снижать в тромбоцитах концентрацию cAMP, что обеспечивается как ингибированием аденилатциклазы (катализирует превращение ATP в cAMP) через Gi белок, связанный с рецептором тромбина, или косвенно, способствуя выбросу ADP, так и повышением активности фосфодиэстераз (ферменты, катализирующие гидролиз cAMP в AMP). Но, предполагается, что этот эффект носит опосредованный характер, обеспечивающийся секрецией ADP на P2Y12 рецептор
Platelet Secretion. In: Michelson AD, editor. Platelets (Fourth Edition)
Flaumenhaft R, Sharda A
Academic Press. 2019, None, 349-70
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Кроме PAR-рецепторов тромбин способен связываться с GPIb-V-IX. Предполагается, что связывание с GPIb, облегчает взаимодействие ферментов с PAR-рецепторами, резко ускоряя их протеолиз, тем самым и ускоряя PAR-зависимую активацию тромбоцитов
New Fundamentals in Hemostasis
H. Versteeg, J. Heemskerk, M. Levi, P. Reitsma
Physiological Reviews. 2013, 93, 327-358
Тромбин является одним из наиболее сильных активтаоров тромбоцитов и приводит к агрегации тромбоцитов, выбросу ADP и ATP, синтезу тромбоксана А2 (TxА2), а также, как и коллаген, способен приводить к самой сильной степени активации тромбоцита — прокоагулянтной активности. Данные пути сигнализации будут описаны далее.
АDP-индуцированная активация тромбоцитов
АDP содержится в плотных гранулах тромбоцита, которые начинают секретироваться при его активации
Adenosine diphosphate (ADP)–induced thromboxane A2generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors
J. Jin, T. Quinton, J. Zhang, S. Rittenhouse, S. Kunapuli
Blood. 2002, 99, 193-198
Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis
L. Jennings
Thrombosis and Haemostasis. 2009, 102, 248-257
Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events
A. Gear
Canadian Journal of Physiology and Pharmacology. 1994, 72, 285-294
Defective platelet activation in Gαq-deficient mice
S. Offermanns, C. Toombs, Y. Hu, M. Simon
Nature. 1997, 389, 183-186
На поверхности тромбоцитов имеется два типа рецепторов к ADP, P2Y1 и P2Y12, оба являются GPCR
Metabolism of adenine nucleotides in human blood.
S. Coade, J. Pearson
Circulation Research. 1989, 65, 531-537
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Platelet Secretion. In: Michelson AD, editor. Platelets (Fourth Edition)
Flaumenhaft R, Sharda A
Academic Press. 2019, None, 349-70
Рецептор P2Y1 передает сигнал на Gq белок, что приводит к тем же ответам тромбоцита, что и при действии тромбина, однако гораздо менее выраженным
Domains specifying thrombin–receptor interaction
T. Vu, V. Wheaton, D. Hung, I. Charo, S. Coughlin
Nature. 1991, 353, 674-677
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Рассматривая ADP как активатор тромбоцитов, следует помнить, что в плазме ADP гидролизуется до AMP с периодом полураспада 10-15 минут, что влияет на количество тромбоцитов, которое он сможет активировать. Гидролиз ADP в плазме происходит под действием АДФазы, которая вырабатывается лимфоцитами и клетками эндотелия
Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and of inhibiting ADP-induced platelet aggregation
J. LUTHJE, A. SCHOMBURG, A. OGILVIE
European Journal of Biochemistry. 1988, 175, 285-289
The evolution of megakaryocytes to platelets
P. Nurden, C. Poujol, A. Nurden
Baillière's Clinical Haematology. 1997, 10, 1-27
Активация тромбоцитов TxA2, серотонином и адреналином.
TXA2 также относится к разряду слабых активаторов тромбоцитов, причем считается еще более слабым активатором, чем ADP. При добавлении TXA2 (или его стабильного аналога U46619) in vitro наблюдаются все функциональные ответы тромбоцитов, кроме прокоагулянтного
Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events
A. Gear
Canadian Journal of Physiology and Pharmacology. 1994, 72, 285-294
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets
Nakano T, Hanasaki K, Arita H.
Journal of Biological Chemistry. 1989, 264, 5400-6
У TP-/- мышей наблюдалось увеличение времени кровотечения. Их тромбоциты были неспособны агрегировать в ответ на введение TXA2, а также увеличивалось время их агрегации в ответ на коллаген. При добавлении аспирина (блокирует синтез TXA2) in vitro происходит ухудшение ответа тромбоцитов на ADP и коллаген. Дефект в ответе на тромбин выглядит как сдвиг кривой концентрация/агрегация, что указывает на то, что синтез TXA2 лишь поддерживает активацию тромбоцитов от тромбина, но он не является необходимым для этого процесса
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Активация тромбоцита с помощью TxА2 не приводит к синтезу и выбросу TxА2
Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase
R. Beigi, E. Kobatake, M. Aizawa, G. Dubyak
American Journal of Physiology-Cell Physiology. 1999, 276, C267-C278
Persistence of thromboxane A2-like material and platelet release-inducing activity in plasma.
J. Smith, C. Ingerman, M. Silver
Journal of Clinical Investigation. 1976, 58, 1119-1122
Signaling During Platelet Adhesion and Activation
Z. Li, M. Delaney, K. O'Brien, X. Du
Arteriosclerosis, Thrombosis, and Vascular Biology. 2010, 30, 2341-2349
Сейчас сигнальный каскад, вызываемый активацией тромбоцита TxА2, известен далеко не полностью. Непонятно, почему при активации тромбоцита TxА2 не начинается синтез TXA2, хотя внутриклеточные события при этом полностью идентичны случаю активации от ADP. Возможно, короткоживущий TXA2 играет роль слабого инициатора процесса активации тромбоцитов, в то время как более долгоживущий ADP усиливает этот процесс и расширяет пространство активации тромбоцитов.
Значимую роль при активации тромбоцитов также могут играть адреналин и серотонин
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach
A. Martin, D. Zlotnik, G. Bonete, E. Baron, B. Decouture, T. Belleville-Rolland, B. Le Bonniec, S. Poirault-Chassac, M. Alessi, P. Gaussem, A. Godier, C. Bachelot-Loza
European Journal of Pharmacology. 2020, 866, 172798
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
Platelet ITAM signaling
W. Bergmeier, L. Stefanini
Current Opinion in Hematology. 2013, 20, 445-450
Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach
A. Martin, D. Zlotnik, G. Bonete, E. Baron, B. Decouture, T. Belleville-Rolland, B. Le Bonniec, S. Poirault-Chassac, M. Alessi, P. Gaussem, A. Godier, C. Bachelot-Loza
European Journal of Pharmacology. 2020, 866, 172798
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
Рецепторы, вызывающие активацию тирозинкиназ
Второй важной ветвью сигнализации в тромбоцитах является тирозинкиназная сигнализация. Тирозинкиназная сигнализация в тромбоцитах построена вокруг каскада тирозинкиназ, которые фосфорилируют как друг друга, так и окружающие их белки эффекторы
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
The Src, Syk, and Tec family kinases: Distinct types of molecular switches
J. Bradshaw
Cellular Signalling. 2010, 22, 1175-1184
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Mechanisms of receptor tyrosine kinase activation in cancer
Z. Du, C. Lovly
Molecular Cancer. 2018, 17, None
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
SH2 domains: modulators of nonreceptor tyrosine kinase activity
P. Filippakopoulos, S. Müller, S. Knapp
Current Opinion in Structural Biology. 2009, 19, 643-649
Kлючевыми киназами, необходимыми для инициации тирозинкиназной сигнализации в тромбоцитах, являются тирозинкиназы семейства SFK, а также киназы Syk и Btk. Тирозинкиназы семейства SFK, к которому в тромбоцитах относятся Src, Fyn и Lyn
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
SH3 domain ligand binding: What's the consensus and where's the specificity?
K. Saksela, P. Permi
FEBS Letters. 2012, 586, 2609-2614
Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role
A. Schmaier, Z. Zou, A. Kazlauskas, L. Emert-Sedlak, K. Fong, K. Neeves, S. Maloney, S. Diamond, S. Kunapuli, J. Ware, L. Brass, T. Smithgall, K. Saksela, M. Kahn
Proceedings of the National Academy of Sciences. 2009, 106, 21167-21172
Molecular Mechanism of the Syk Activation Switch
E. Tsang, A. Giannetti, D. Shaw, M. Dinh, J. Tse, S. Gandhi, H. Ho, S. Wang, E. Papp, J. Bradshaw
Journal of Biological Chemistry. 2008, 283, 32650-32659
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Тирозинкиназы Syk являются переключателями типа «ИЛИ» - они могут быть активированы путём активации одного или другого доменов. Структура Syk киназ является менее сложной, чем структура SFK киназ: Syk состоят из трех доменов: одного каталитического и двух SH2-доменов
The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets
C. Hughes, B. Finney, F. Koentgen, K. Lowe, S. Watson
Blood. 2015, 125, 144-154
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets
C. Hughes, B. Finney, F. Koentgen, K. Lowe, S. Watson
Blood. 2015, 125, 144-154
The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets
C. Hughes, B. Finney, F. Koentgen, K. Lowe, S. Watson
Blood. 2015, 125, 144-154
Dynamics of the Tec-family tyrosine kinase SH3 domains
J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales
Protein Science. 2016, 25, 852-864
Тирозинкиназы Btk и Tec
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies
J. Shatzel, S. Olson, D. Tao, O. McCarty, A. Danilov, T. DeLoughery
Journal of Thrombosis and Haemostasis. 2017, 15, 835-847
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
The transmembrane adapter LAT plays a central role in immune receptor signalling
P. Wonerow, S. Watson
Oncogene. 2001, 20, 6273-6283
Активация тирозинкиназ является первым шагом при инициации сборки сигналосом – крупных белковых комплексов - источников распространения внутриклеточного сигнала
Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis
L. Musumeci, M. Kuijpers, K. Gilio, A. Hego, E. Théâtre, L. Maurissen, M. Vandereyken, C. Diogo, C. Lecut, W. Guilmain, E. Bobkova, J. Eble, R. Dahl, P. Drion, J. Rascon, Y. Mostofi, H. Yuan, E. Sergienko, T. Chung, M. Thiry, Y. Senis, M. Moutschen, T. Mustelin, P. Lancellotti, J. Heemskerk, L. Tautz, C. Oury, S. Rahmouni
Circulation. 2015, 131, 656-668
Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling
A. Martyanov, F. Balabin, J. Dunster, M. Panteleev, J. Gibbins, A. Sveshnikova
Biophysical Journal. 2020, 118, 2641-2655
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Важно заметить, что при активации тирозинкиназной сигнализации важную роль играют не только киназы, но и фосфатазы. Так, помимо вышеупомянутой CD148, регуляцию SFK могут также осуществлять PTP1B и DUSP3 фосфатазы, которые активируются в процессе распространения активационного сигнала путём фосфорилирования
Mechanisms of receptor tyrosine kinase activation in cancer
Z. Du, C. Lovly
Molecular Cancer. 2018, 17, None
ITIM receptors: more than just inhibitors of platelet activation
C. Coxon, M. Geer, Y. Senis
Blood. 2017, 129, 3407-3418
Mechanisms of receptor tyrosine kinase activation in cancer
Z. Du, C. Lovly
Molecular Cancer. 2018, 17, None
Functional significance of the platelet immune receptors GPVI and CLEC-2
J. Rayes, S. Watson, B. Nieswandt
Journal of Clinical Investigation. 2019, 129, 12-23
SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels
S. GIURIATO, X. PESESSE, S. BODIN, T. SASAKI, C. VIALA, E. MARION, J. PENNINGER, S. SCHURMANS, C. ERNEUX, B. PAYRASTRE
Biochemical Journal. 2003, 376, 199-207
Рецепторы, запускающие или подавляющие тирозинкиназную сигнализацию
На человеческих тромбоцитах присутствует 3 типа рецепторов, запускающих активацию каскада тирозинкиназ: рецептор к коллагену GPVI, рецептор к подопланину CLEC-2, а также рецептор к иммуноглобулинам класса G FcγRIIa
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
The Src, Syk, and Tec family kinases: Distinct types of molecular switches
J. Bradshaw
Cellular Signalling. 2010, 22, 1175-1184
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1
N. Prévost, D. Woulfe, M. Tognolini, T. Tanaka, W. Jian, R. Fortna, H. Jiang, L. Brass
Blood. 2004, 103, 1348-1355
SLAM Family Receptors and SAP Adaptors in Immunity
J. Cannons, S. Tangye, P. Schwartzberg
Annual Review of Immunology. 2011, 29, 665-705
Помимо активирующих тирозинкиназа-зависимых рецепторов на поверхности тромбоцитов также присутствуют и ингибирующие тирозинкиназные рецепторы, несущие в своих цитоплазматических доменах последовательности ITIM и ITSM
Functional significance of the platelet immune receptors GPVI and CLEC-2
J. Rayes, S. Watson, B. Nieswandt
Journal of Clinical Investigation. 2019, 129, 12-23
Platelet Inhibitory Receptors. In: Michelson AD, editor. Platelets (Fourth Edition)
Nagy Z, Senis YA
Academic Press. 2019, None, 279-93
Functional significance of the platelet immune receptors GPVI and CLEC-2
J. Rayes, S. Watson, B. Nieswandt
Journal of Clinical Investigation. 2019, 129, 12-23
Functional significance of the platelet immune receptors GPVI and CLEC-2
J. Rayes, S. Watson, B. Nieswandt
Journal of Clinical Investigation. 2019, 129, 12-23
PECAM-1 присутствует не только на тромбоцитах, но и на лейкоцитах, а также эндотелиоцитах
Minimal regulation of platelet activity by PECAM-1
T. Dhanjal, E. Ross, J. Auger, O. Mccarty, C. Hughes, Y. Senis, S. Watson
Platelets. 2007, 18, 56-67
Minimal regulation of platelet activity by PECAM-1
T. Dhanjal, E. Ross, J. Auger, O. Mccarty, C. Hughes, Y. Senis, S. Watson
Platelets. 2007, 18, 56-67
Collagen, Convulxin, and Thrombin Stimulate Aggregation-independent Tyrosine Phosphorylation of CD31 in Platelets
M. Cicmil, J. Thomas, T. Sage, F. Barry, M. Leduc, C. Bon, J. Gibbins
Journal of Biological Chemistry. 2000, 275, 27339-27347
Thrombin-induced association of SHP-2 with multiple tyrosine-phosphorylated proteins in human platelets
C. Edmead, D. Crosby, M. Southcott, A. Poole
FEBS Letters. 1999, 459, 27-32
Thrombin-induced association of SHP-2 with multiple tyrosine-phosphorylated proteins in human platelets
C. Edmead, D. Crosby, M. Southcott, A. Poole
FEBS Letters. 1999, 459, 27-32
Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-γ1 with PECAM-1/CD31
N. Pumphrey, V. Taylor, S. Freeman, M. Douglas, P. Bradfield, S. Young, J. Lord, M. Wakelam, I. Bird, M. Salmon, C. Buckley
FEBS Letters. 1999, 450, 77-83
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148
J. Mori, Z. Nagy, G. Di Nunzio, C. Smith, M. Geer, R. Al Ghaithi, J. van Geffen, S. Heising, L. Boothman, B. Tullemans, J. Correia, L. Tee, M. Kuijpers, P. Harrison, J. Heemskerk, G. Jarvis, A. Tarakhovsky, A. Weiss, A. Mazharian, Y. Senis
Blood. 2018, 131, 1122-1144
Цитоплазматический домен G6b-B также состоит из двух мотивов ITAM-ISTM, однако, в отличие от PECAM-1, G6b-B находится в постоянном доступе для фосфорилирования SFK-киназами
An Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b
C. Coxon, A. Sadler, J. Huo, R. Campbell
PLoS ONE. 2012, 7, e49543
An Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b
C. Coxon, A. Sadler, J. Huo, R. Campbell
PLoS ONE. 2012, 7, e49543
Fibrin and D-dimer bind to monomeric GPVI
M. Onselaer, A. Hardy, C. Wilson, X. Sanchez, A. Babar, J. Miller, C. Watson, S. Watson, A. Bonna, H. Philippou, A. Herr, D. Mezzano, R. Ariëns, S. Watson
Blood Advances. 2017, 1, 1495-1504
GPVI – ключевой тромбоцитарный рецептор к коллагену
GPVI – мембранный гликопротеин, узнающий несколько последовательностей глицин-пролин-гидроксипролин (GPO), характерных для коллагена
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin
M. Ahmed, V. Kaneva, S. Loyau, D. Nechipurenko, N. Receveur, M. Le Bris, E. Janus-Bell, M. Didelot, A. Rauch, S. Susen, N. Chakfé, F. Lanza, E. Gardiner, R. Andrews, M. Panteleev, C. Gachet, M. Jandrot-Perrus, P. Mangin
Arteriosclerosis, Thrombosis, and Vascular Biology. 2020, 40, 2127-2142
Integrin αIIbβ3. In: Michelson AD, editor. Platelets (Fourth Edition)
Bledzka K, Qin J, Plow EF.
Academic Press. 2019, None, 227–41
The Src, Syk, and Tec family kinases: Distinct types of molecular switches
J. Bradshaw
Cellular Signalling. 2010, 22, 1175-1184
Comparison of the GPVI inhibitors losartan and honokiol
M. Onselaer, M. Nagy, C. Pallini, J. Pike, G. Perrella, L. Quintanilla, J. Eble, N. Poulter, J. Heemskerk, S. Watson
Platelets. 2020, 31, 187-197
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets
N. Poulter, A. Pollitt, D. Owen, E. Gardiner, R. Andrews, H. Shimizu, D. Ishikawa, D. Bihan, R. Farndale, M. Moroi, S. Watson, S. Jung
Journal of Thrombosis and Haemostasis. 2017, 15, 549-564
Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts
K. Komatsuya, K. Kaneko, K. Kasahara
International Journal of Molecular Sciences. 2020, 21, 5539
Role of PI3K/Akt signaling in memory CD8 T cell differentiation
E. Kim, M. Suresh
Frontiers in Immunology. 2013, 4, None
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Цитоплазматический домен GPVI через солевые мостики ассоциирован с FcγR-цепью, на которой присутствует ITAM
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Platelets and vascular integrity: how platelets prevent bleeding in inflammation
B. Ho-Tin-Noé, Y. Boulaftali, E. Camerer
Blood. 2018, 131, 277-288
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
CLEC-2 – рецептор, необходимый для предотвращения смешения крови и лимфы
Клетки лимфатического эндотелия выставляют на свою поверхности подопланин – гликопротеин, способный активировать тромбоциты через их рецептор CLEC-2
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells
A. Pollitt, N. Poulter, E. Gitz, L. Navarro-Nuñez, Y. Wang, C. Hughes, S. Thomas, B. Nieswandt, M. Douglas, D. Owen, D. Jackson, M. Dustin, S. Watson
Journal of Biological Chemistry. 2014, 289, 35695-35710
Внутриклеточный сигнальный каскад рецептора CLEC-2, за исключением начальных стадий активации, схож со внутриклеточным каскадом активации GPVI
Dynamics of the Tec-family tyrosine kinase SH3 domains
J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales
Protein Science. 2016, 25, 852-864
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Dynamics of the Tec-family tyrosine kinase SH3 domains
J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales
Protein Science. 2016, 25, 852-864
Platelet GPIb complex as a target for anti-thrombotic drug development
J. Clemetson, K. Clemetson
Thrombosis and Haemostasis. 2008, 99, 473-479
Platelet GPIb complex as a target for anti-thrombotic drug development
J. Clemetson, K. Clemetson
Thrombosis and Haemostasis. 2008, 99, 473-479
Dynamics of the Tec-family tyrosine kinase SH3 domains
J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales
Protein Science. 2016, 25, 852-864

Адгезионные и иммунные рецепторы
Одним из первых ответов тромбоцитов на возникающее повреждение стенок кровеносных сосудов является их адгезия в области повреждения, ключевыми рецепторами для которой являются гликопротеин Ib и интегрины aIIbb3. Гликопротеин Ib и интегрины aIIbb3 не вызывают активацию тирозинкиназной сигнализации в тромбоцитах напрямую: ни на GPIb, ни на aIIbb3 нет фосфорилируемых остатков тирозина, которые могли бы послужить активационными сайтами для инициации тирозинкиназной сигнализации
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, None, 59-85
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
Comparison of the GPVI inhibitors losartan and honokiol
M. Onselaer, M. Nagy, C. Pallini, J. Pike, G. Perrella, L. Quintanilla, J. Eble, N. Poulter, J. Heemskerk, S. Watson
Platelets. 2020, 31, 187-197
Targeting Integrin and Integrin Signaling in Treating Thrombosis
B. Estevez, B. Shen, X. Du
Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 24-29
Von Willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics
L. Ju, Y. Chen, F. Zhou, H. Lu, M. Cruz, C. Zhu
Thrombosis Research. 2015, 136, 606-612
GPIb является комплексом из трех гликопротеинов (GPIb-GPIX-GPV), который связывается с А2 доменом развёрнутого в потоке vWF
A short history of platelet glycoprotein Ib complex
Clemetson K
Thrombosis and Haemostasis. 2007, 98 (1), 63-8
Association of a phospholipase A2 (14-3-3 protein) with the platelet glycoprotein Ib-IX complex
X. Du, S. Harris, T. Tetaz, M. Ginsberg, M. Berndt
Journal of Biological Chemistry. 1994, 269, 18287-18290
Platelet biology and functions: new concepts and clinical perspectives
P. van der Meijden, J. Heemskerk
Nature Reviews Cardiology. 2019, 16, 166-179
The structure of the GPIb–filamin A complex
F. Nakamura, R. Pudas, O. Heikkinen, P. Permi, I. Kilpeläinen, A. Munday, J. Hartwig, T. Stossel, J. Ylänne
Blood. 2006, 107, 1925-1932
A functional 14-3-3ζ–independent association of PI3-kinase with glycoprotein Ibα, the major ligand-binding subunit of the platelet glycoprotein Ib-IX-V complex
F. Mu, R. Andrews, J. Arthur, A. Munday, S. Cranmer, S. Jackson, F. Stomski, A. Lopez, M. Berndt
Blood. 2008, 111, 4580-4587
Functional association of phosphoinositide-3-kinase with platelet glycoprotein Ibα, the major ligand-binding subunit of the glycoprotein Ib-IX-V complex
F. MU, S. CRANMER, R. ANDREWS, M. BERNDT
Journal of Thrombosis and Haemostasis. 2010, 8, 324-330
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
J. Huang, X. Li, X. Shi, M. Zhu, J. Wang, S. Huang, X. Huang, H. Wang, L. Li, H. Deng, Y. Zhou, J. Mao, Z. Long, Z. Ma, W. Ye, J. Pan, X. Xi, J. Jin
Journal of Hematology & Oncology. 2019, 12, None
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
J. Huang, X. Li, X. Shi, M. Zhu, J. Wang, S. Huang, X. Huang, H. Wang, L. Li, H. Deng, Y. Zhou, J. Mao, Z. Long, Z. Ma, W. Ye, J. Pan, X. Xi, J. Jin
Journal of Hematology & Oncology. 2019, 12, None
«Outside-in» сигнализация от интегринов инициируется при их кластеризации
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
The platelet Fc receptor, FcγRIIa
J. Qiao, M. Al-Tamimi, R. Baker, R. Andrews, E. Gardiner
Immunological Reviews. 2015, 268, 241-252
Comparison of the GPVI inhibitors losartan and honokiol
M. Onselaer, M. Nagy, C. Pallini, J. Pike, G. Perrella, L. Quintanilla, J. Eble, N. Poulter, J. Heemskerk, S. Watson
Platelets. 2020, 31, 187-197
The platelet Fc receptor, FcγRIIa
J. Qiao, M. Al-Tamimi, R. Baker, R. Andrews, E. Gardiner
Immunological Reviews. 2015, 268, 241-252
Comparison of the GPVI inhibitors losartan and honokiol
M. Onselaer, M. Nagy, C. Pallini, J. Pike, G. Perrella, L. Quintanilla, J. Eble, N. Poulter, J. Heemskerk, S. Watson
Platelets. 2020, 31, 187-197
Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis
M. Tomaiuolo, L. Brass, T. Stalker
Interventional Cardiology Clinics. 2017, 6, 1-12
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting
J. Huang, X. Li, X. Shi, M. Zhu, J. Wang, S. Huang, X. Huang, H. Wang, L. Li, H. Deng, Y. Zhou, J. Mao, Z. Long, Z. Ma, W. Ye, J. Pan, X. Xi, J. Jin
Journal of Hematology & Oncology. 2019, 12, None
RAP GTPases and platelet integrin signaling
L. Stefanini, W. Bergmeier
Platelets. 2019, 30, 41-47
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
Показано, что при бактериальном сепсисе и генерации иммунного ответа тромбоциты могут окружать появившиеся в кровотоке бактерии, что будет приводить к гибели бактерий
Platelet Toll-like receptor expression and activation induced by lipopolysaccharide and sepsis
T. Claushuis, A. Van Der Veen, J. Horn, M. Schultz, R. Houtkooper, C. Van ’T Veer, T. Van Der Poll
Platelets. 2019, 30, 296-304
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
Platelet Toll-like receptor expression and activation induced by lipopolysaccharide and sepsis
T. Claushuis, A. Van Der Veen, J. Horn, M. Schultz, R. Houtkooper, C. Van ’T Veer, T. Van Der Poll
Platelets. 2019, 30, 296-304
Среди рецепторов, вызывающих активацию тромбоцитов, отдельно выделяется группа рецепторов, узнающих патоген-ассоциированные молекулярные паттерны (PAMP) и молекулярные паттерны, ассоциированные с повреждениями (DAMP) – Toll-подобные рецепторы (TLR)
Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia
C. Marín Oyarzún, A. Glembotsky, N. Goette, P. Lev, G. De Luca, M. Baroni Pietto, B. Moiraghi, M. Castro Ríos, A. Vicente, R. Marta, M. Schattner, P. Heller
Frontiers in Immunology. 2020, 11, None
The inflammatory role of platelets via their TLRs and Siglec receptors
F. Cognasse
Frontiers in Immunology. 2015, 6, None
Моделирование секреции гранул при активации тромбоцитов через TLR4-рецептор
Майоров А.С., Шепелюк Т.О., Балабин Ф.А., Мартьянов А.А., Нечипуренко Д.Ю., Свешникова А.Н.
Биофизика. 2018, 63 (3), 475-483
Активация TLR рецепторов инициирует сборку сигнального комплекса, в основании которого находится адаптерный белок MyD88 – миддосомы
Akt signaling in platelets and thrombosis
D. Woulfe
Expert Review of Hematology. 2010, 3, 81-91
Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia
C. Marín Oyarzún, A. Glembotsky, N. Goette, P. Lev, G. De Luca, M. Baroni Pietto, B. Moiraghi, M. Castro Ríos, A. Vicente, R. Marta, M. Schattner, P. Heller
Frontiers in Immunology. 2020, 11, None
Моделирование секреции гранул при активации тромбоцитов через TLR4-рецептор
Майоров А.С., Шепелюк Т.О., Балабин Ф.А., Мартьянов А.А., Нечипуренко Д.Ю., Свешникова А.Н.
Биофизика. 2018, 63 (3), 475-483
Моделирование секреции гранул при активации тромбоцитов через TLR4-рецептор
Майоров А.С., Шепелюк Т.О., Балабин Ф.А., Мартьянов А.А., Нечипуренко Д.Ю., Свешникова А.Н.
Биофизика. 2018, 63 (3), 475-483
IκB kinase phosphorylation of SNAP-23 controls platelet secretion
Z. Karim, J. Zhang, M. Banerjee, M. Chicka, R. Al Hawas, T. Hamilton, P. Roche, S. Whiteheart
Blood. 2013, 121, 4567-4574
Platelet Toll-like receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction
K. Hally, A. La Flamme, P. Larsen, S. Harding
Thrombosis Research. 2017, 158, 8-15
Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2
A. ASSINGER, M. LAKY, G. SCHABBAUER, A. HIRSCHL, E. BUCHBERGER, B. BINDER, I. VOLF
Journal of Thrombosis and Haemostasis. 2011, 9, 799-809
Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2
A. ASSINGER, M. LAKY, G. SCHABBAUER, A. HIRSCHL, E. BUCHBERGER, B. BINDER, I. VOLF
Journal of Thrombosis and Haemostasis. 2011, 9, 799-809
Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response Through Activation of Phosphoinositide 3-Kinase
P. Blair, S. Rex, O. Vitseva, L. Beaulieu, K. Tanriverdi, S. Chakrabarti, C. Hayashi, C. Genco, M. Iafrati, J. Freedman
Circulation Research. 2009, 104, 346-354
Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4
A. Assinger, M. Laky, S. Badrnya, A. Esfandeyari, I. Volf
Thrombosis Research. 2012, 130, e73-e78
Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response Through Activation of Phosphoinositide 3-Kinase
P. Blair, S. Rex, O. Vitseva, L. Beaulieu, K. Tanriverdi, S. Chakrabarti, C. Hayashi, C. Genco, M. Iafrati, J. Freedman
Circulation Research. 2009, 104, 346-354
Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response Through Activation of Phosphoinositide 3-Kinase
P. Blair, S. Rex, O. Vitseva, L. Beaulieu, K. Tanriverdi, S. Chakrabarti, C. Hayashi, C. Genco, M. Iafrati, J. Freedman
Circulation Research. 2009, 104, 346-354
Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia
C. Marín Oyarzún, A. Glembotsky, N. Goette, P. Lev, G. De Luca, M. Baroni Pietto, B. Moiraghi, M. Castro Ríos, A. Vicente, R. Marta, M. Schattner, P. Heller
Frontiers in Immunology. 2020, 11, None
GMP and cGMP-dependent protein kinase in platelets and blood cells
Walter U, Gambaryan S
Handbook of Experimental Pharmacology. 2009, None, 533-48
Lipopolysaccharide Signaling without a Nucleus: Kinase Cascades Stimulate Platelet Shedding of Proinflammatory IL-1β–Rich Microparticles
G. Brown, T. McIntyre
The Journal of Immunology. 2011, 186, 5489-5496
The Role of Human Platelet Preparation for Toll-Like Receptors 2 and 4 Related Platelet Responsiveness
J. Koessler, M. Niklaus, K. Weber, A. Koessler, S. Kuhn, M. Boeck, A. Kobsar
TH Open. 2019, 03, e94-e102
Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production
C. Nocella, R. Carnevale, S. Bartimoccia, M. Novo, R. Cangemi, D. Pastori, C. Calvieri, P. Pignatelli, F. Violi
Thrombosis and Haemostasis. 2017, 117, 1558-1570
The role of platelets in mediating a response to human influenza infection
M. Koupenova, H. Corkrey, O. Vitseva, G. Manni, C. Pang, L. Clancy, C. Yao, J. Rade, D. Levy, J. Wang, R. Finberg, E. Kurt-Jones, J. Freedman
Nature Communications. 2019, 10, None
Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2
A. ASSINGER, M. LAKY, G. SCHABBAUER, A. HIRSCHL, E. BUCHBERGER, B. BINDER, I. VOLF
Journal of Thrombosis and Haemostasis. 2011, 9, 799-809
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis
K. Hally, S. Fauteux-Daniel, H. Hamzeh-Cognasse, P. Larsen, F. Cognasse
International Journal of Molecular Sciences. 2020, 21, 6150
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis
K. Hally, S. Fauteux-Daniel, H. Hamzeh-Cognasse, P. Larsen, F. Cognasse
International Journal of Molecular Sciences. 2020, 21, 6150
T granules in human platelets function in TLR9 organization and signaling
J. Thon, C. Peters, K. Machlus, R. Aslam, J. Rowley, H. Macleod, M. Devine, T. Fuchs, A. Weyrich, J. Semple, R. Flaumenhaft, J. Italiano
Journal of Cell Biology. 2012, 198, 561-574
Engagement of Platelet Toll-Like Receptor 9 by Novel Endogenous Ligands Promotes Platelet Hyperreactivity and Thrombosis
S. Panigrahi, Y. Ma, L. Hong, D. Gao, X. West, R. Salomon, T. Byzova, E. Podrez
Circulation Research. 2013, 112, 103-112
Engagement of Platelet Toll-Like Receptor 9 by Novel Endogenous Ligands Promotes Platelet Hyperreactivity and Thrombosis
S. Panigrahi, Y. Ma, L. Hong, D. Gao, X. West, R. Salomon, T. Byzova, E. Podrez
Circulation Research. 2013, 112, 103-112
Mitochondria in lung biology and pathology: more than just a powerhouse
P. Schumacker, M. Gillespie, K. Nakahira, A. Choi, E. Crouser, C. Piantadosi, J. Bhattacharya
American Journal of Physiology-Lung Cellular and Molecular Physiology. 2014, 306, L962-L974
Помимо PAMP-индуцированной сигнализации, тромбоциты также могут быть источником DAMP, которые будут узнаваться TLR-рецепторами. Так, эндогенные митохондриальные DAMP, митохондриальная ДНК (мтДНК), а также митохондриальные белки, являются мощными иммуностимуляторами
MITOCHONDRIAL DNA IS RELEASED BY SHOCK AND ACTIVATES NEUTROPHILS VIA P38 MAP KINASE
Q. Zhang, K. Itagaki, C. Hauser
Shock. 2010, 34, 55-59
Circulating mitochondrial DAMPs cause inflammatory responses to injury
Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki, C. Hauser
Nature. 2010, 464, 104-107
Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation
L. Boudreau, A. Duchez, N. Cloutier, D. Soulet, N. Martin, J. Bollinger, A. Paré, M. Rousseau, G. Naika, T. Lévesque, C. Laflamme, G. Marcoux, G. Lambeau, R. Farndale, M. Pouliot, H. Hamzeh-Cognasse, F. Cognasse, O. Garraud, P. Nigrovic, H. Guderley, S. Lacroix, L. Thibault, J. Semple, M. Gelb, E. Boilard
Blood. 2014, 124, 2173-2183
Mitochondrial DAMPs Increase Endothelial Permeability through Neutrophil Dependent and Independent Pathways
S. Sun, T. Sursal, Y. Adibnia, C. Zhao, Y. Zheng, H. Li, L. Otterbein, C. Hauser, K. Itagaki
PLoS ONE. 2013, 8, e59989
Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE
J. Tian, A. Avalos, S. Mao, B. Chen, K. Senthil, H. Wu, P. Parroche, S. Drabic, D. Golenbock, C. Sirois, J. Hua, L. An, L. Audoly, G. La Rosa, A. Bierhaus, P. Naworth, A. Marshak-Rothstein, M. Crow, K. Fitzgerald, E. Latz, P. Kiener, A. Coyle
Nature Immunology. 2007, 8, 487-496
HMGB1 - еще один хорошо описанный DAMP, который пассивно выделяется как при клеточном стрессе, так и при некрозе: HMGB1 паракринным образом сигнализирует об «опасности» соседним клеткам. Показано, что HMGB1 связывается с несколькими членами семейства TLR: HMGB1 может образовывать комплекс с CpG-ДНК и связываться с TLR9 и RAGE, увеличивая продукцию цитокинов в плазматических дендритных клетках
Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE
V. Urbonaviciute, B. Fürnrohr, S. Meister, L. Munoz, P. Heyder, F. De Marchis, M. Bianchi, C. Kirschning, H. Wagner, A. Manfredi, J. Kalden, G. Schett, P. Rovere-Querini, M. Herrmann, R. Voll
Journal of Experimental Medicine. 2008, 205, 3007-3018
Platelets and Complement Cross-Talk in Early Atherogenesis
H. Kim, E. Conway
Frontiers in Cardiovascular Medicine. 2019, 6, None
Наконец, на тромбоцитах также присутствуют и рецепторы к компонентам системы комплемента: C3aR, C5aR. Показано, что при их активации происходит секреция тромбоцитарных гранул и выставление P-селектина, что также привлекает иммунные клетки. Также при секреции гранул происходит выставление C1qR-рецептора. Показано, что у пациентов с коронарным синдромом экспрессия данных рецепторов на поверхности тромбоцитов увеличена
Vasodilator-Stimulated Phosphoprotein (VASP)-dependent and -independent pathways regulate thrombin-induced activation of Rap1b in platelets
P. Benz, H. Laban, J. Zink, L. Günther, U. Walter, S. Gambaryan, K. Dib
Cell Communication and Signaling. 2016, 14, None
Ингибирование активации тромбоцитов
Тромбоцит поддерживается в неактивированном состоянии высокими концентрациями циклических нуклеотидов. Повышение концентрации cAMP стимулирует рецептор к простациклину, IP, ассоциированный с Gs белками
PGE1 and PGE2 modify platelet function through different prostanoid receptors
D. Iyú, M. Jüttner, J. Glenn, A. White, A. Johnson, S. Fox, S. Heptinstall
Prostaglandins & Other Lipid Mediators. 2011, 94, 9-16
Endothelial Function and Dysfunction
J. Deanfield, J. Halcox, T. Rabelink
Circulation. 2007, 115, 1285-1295
A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation
M. Mischnik, D. Boyanova, K. Hubertus, J. Geiger, N. Philippi, M. Dittrich, G. Wangorsch, J. Timmer, T. Dandekar
Molecular BioSystems. 2013, 9, 1326
Platelet-Derived Nitric Oxide Signaling and Regulation
E. Gkaliagkousi, J. Ritter, A. Ferro
Circulation Research. 2007, 101, 654-662
Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen
W. ROBERTS, R. RIBA, S. HOMER-VANNIASINKAM, R. FARNDALE, K. NASEEM
Journal of Thrombosis and Haemostasis. 2008, 6, 2175-2185
GMP and cGMP-dependent protein kinase in platelets and blood cells
Walter U, Gambaryan S
Handbook of Experimental Pharmacology. 2009, None, 533-48
The unique contribution of ion channels to platelet and megakaryocyte function
M. MAHAUT-SMITH
Journal of Thrombosis and Haemostasis. 2012, 10, 1722-1732
Заключение
Выполнение физиологических задач тромбоцитами неразрывно связано с необходимостью одновременно получать и интерпретировать большое количество внешних сигналов. Более того, в некоторых случаях эти сигналы могут другу другу противоречить. Благодаря сложной и разветвлённой сети рецепторов, запускающей GPCR или тирозинкиназную сигнализацию, тромбоциты могут «справляться с таким давлением» и адекватно реагировать на возникающие нарушения целостности кровеносных сосудов. Более того, пути сигнализации в тромбоцитах могут синергически усиливать друг-друга (тирозинкиназная и GPCR) или же, напротив, подавлять (cAMP/cGMP сигнализация). Интересно, что на тромбоцитах также есть и потенциал-зависимые рецепторы, такие как каналы Kv1.3 и APMPA
Интересно, что синергическое усиление путей активации тромбоцитов может происходить как в рамках одного типа сигнализации, так и для разных типов. Так, с одной стороны АДФ индуцирует кальциевую сигнализацию и активацию тромбоцитарных интегринов aIIbb3 Gq-зависимым образом через рецептор P2Y1. С другой стороны, АДФ также может снижать концентрацию cAMP Gi-зависимым образом через рецептор P2Y12, что многократно усиливает активацию тромбоцитов. С другой стороны, тирозинкиназная ветвь сигнализации и GPCR-сигнализация могут усиливать друг друга: обе данные ветви сигнализации индуцируют активацию PI3K, которая запускает фосфоинозитидную ветвь сигнализации. Более того, активация фосфоинозитидной сигнализации при outside-in сигнализации через тромбоцитарные интегрины aIIbb3 также становится важным элементом синергического усиления активации тромбоцитов.
Взаимодействие путей внутриклеточной сигнализации в тромбоцитах также позволяет им активироваться с уникальной быстротой: тромбоциты часто становятся первой линией ответа организма на патологии. Более того, тромбоциты являются и важными участниками иммунных процессов, таких как ответ организма на бактериальную или вирусную инфекцию или же для модуляции ответов компонентов клеточного иммунитета. Вторичные мессенджеры, управляющие всеми этими ответами тромбоцитов и обеспечивающие взаимодействие между активационными сигналами и функциональными ответами тромбоцитов станут предметом следующей части нашего цикла обзоров.
Вклад авторов
A.A.M. создавал рисунки, писал текст и редактировал статью; M.A.П. руководил проектом, писал текст и редактировал статью. Все авторы прочитали и согласовали опубликованную версию рукописи.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов
Финансирование
Работа выполнена при финансовой поддержке Стипендии Президента РФ СП 2675.2019.4
Библиографические ссылки статьи:
Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion
M. Panteleev, N. Dashkevich, F. Ataullakhanov
Thrombosis Research. 2015, 136, 699-711
Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition
T. Getz, R. Piatt, B. Petrich, D. Monroe, N. Mackman, W. Bergmeier
Journal of Thrombosis and Haemostasis. 2015, 13, 417-425
Platelets and vascular integrity
C. Deppermann
Platelets. 2018, 29, 549-555
Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor
A. Martyanov, V. Kaneva, M. Panteleev, A. Sveshnikova
Oncohematology. 2018, 13, 83-90
How platelets safeguard vascular integrity
B. HO-TIN-NOÉ, M. DEMERS, D. WAGNER
Journal of Thrombosis and Haemostasis. 2011, 9, 56-65
Platelet ITAM signaling is critical for vascular integrity in inflammation
Yacine Boulaftali, Paul R. Hess, Todd M. Getz, Agnieszka Cholka, Moritz Stolla, Nigel Mackman, A. Phillip Owens III, Jerry Ware, Mark L. Kahn, Wolfgang Bergmeier
The Journal of Clinical Investigation. 2013, 123 (2), 908-916
Editorial: Platelets and Immune Responses During Thromboinflammation
M. Schattner, C. Jenne, S. Negrotto, B. Ho-Tin-Noe
Frontiers in Immunology. 2020, 11,
The dual role of platelet-innate immune cell interactions in thrombo-inflammation
J. Rayes, J. Bourne, A. Brill, S. Watson
Research and Practice in Thrombosis and Haemostasis. 2020, 4, 23-35
Lipopolysaccharide Signaling without a Nucleus: Kinase Cascades Stimulate Platelet Shedding of Proinflammatory IL-1β–Rich Microparticles
G. Brown, T. McIntyre
The Journal of Immunology. 2011, 186, 5489-5496
Platelet functional responses and signalling: the molecular relationship. Part 1: responses.
A. Sveshnikova, M. Stepanyan, M. Panteleev
Systems Biology and Physiology Reports. 2021, 1, 20-28
Platelets: production, morphology and ultrastructure
Thon JN, Italiano JE
Handbook of Experimental Pharmacology. 2012, , 3-22
Platelet shape change and spreading
Aslan JE, Itakura A, Gertz JM, McCarty OJT
Methods in Molecular Biology. 2012, 788, 91-100
Tubulin in Platelets: When the Shape Matters
E. Cuenca-Zamora, F. Ferrer-Marín, J. Rivera, R. Teruel-Montoya
International Journal of Molecular Sciences. 2019, 20, 3484
New explanations for old observations: marginal band coiling during platelet activation
K. Sadoul
Journal of Thrombosis and Haemostasis. 2015, 13, 333-346
Actin dynamics in platelets
Bearer EL, Prakash JM, Li Z.
International Review of Cytology. 2002, 217, 137-82
Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs
E. Shin, H. Park, J. Noh, K. Lim, J. Chung
Biomolecules & Therapeutics. 2017, 25, 223-230
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Platelet signaling
Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF
Handbook of Experimental Pharmacology. 2012, , 59-85
Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis
M. Tomaiuolo, L. Brass, T. Stalker
Interventional Cardiology Clinics. 2017, 6, 1-12
RAP GTPases and platelet integrin signaling
L. Stefanini, W. Bergmeier
Platelets. 2019, 30, 41-47
Platelet Secretion. In: Michelson AD, editor. Platelets (Fourth Edition)
Flaumenhaft R, Sharda A
Academic Press. 2019, , 349-70
Sorting machineries: how platelet-dense granules differ from α-granules
Y. Chen, Y. Yuan, W. Li
Bioscience Reports. 2018, 38,
Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling
A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057
Procoagulant Platelets Form an α-Granule Protein-covered “Cap” on Their Surface That Promotes Their Attachment to Aggregates
A. Abaeva, M. Canault, Y. Kotova, S. Obydennyy, A. Yakimenko, N. Podoplelova, V. Kolyadko, H. Chambost, A. Mazurov, F. Ataullakhanov, A. Nurden, M. Alessi, M. Panteleev
Journal of Biological Chemistry. 2013, 288, 29621-29632
Regulating thrombus growth and stability to achieve an optimal response to injury
L. BRASS, K. WANNEMACHER, P. MA, T. STALKER
Journal of Thrombosis and Haemostasis. 2011, 9, 66-75
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface
D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev
Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47
Platelet biology and functions: new concepts and clinical perspectives
P. van der Meijden, J. Heemskerk
Nature Reviews Cardiology. 2019, 16, 166-179
Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations
F. Balabin, A. Sveshnikova
Mathematical Biosciences. 2016, 276, 67-74
Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation
S. Obydennyy, A. Sveshnikova, F. Ataullakhanov, M. Panteleev
Journal of Thrombosis and Haemostasis. 2016, 14, 1867-1881
Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling
A. Martyanov, F. Balabin, J. Dunster, M. Panteleev, J. Gibbins, A. Sveshnikova
Biophysical Journal. 2020, 118, 2641-2655
Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1
A. Sveshnikova, F. Ataullakhanov, M. Panteleev
Molecular BioSystems. 2015, 11, 1052-1060
Calcium signaling in platelets
D. VARGA-SZABO, A. BRAUN, B. NIESWANDT
Journal of Thrombosis and Haemostasis. 2009, 7, 1057-1066
Agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum
M. Chalmers, M. Schell, P. Thorn
Biochemical Journal. 2006, 394, 57-66
Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets
S. Obydennyi, E. Artemenko, A. Sveshnikova, A. Ignatova, T. Varlamova, S. Gambaryan, G. Lomakina, N. Ugarova, I. Kireev, F. Ataullakhanov, G. Novichkova, A. Maschan, A. Shcherbina, M. Panteleev
Haematologica. 2020, 105, 1095-1106
Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol
A. Södergren, S. Ramström
Scientific Reports. 2018, 8,
Программируемая клеточная смерть и функциональная активность тромбоцитов при онкогематологических заболеваниях
А. Мартьянов, А. Игнатова, Г. Свидельская, Е. Пономаренко, С. Гамбарян, А. Свешникова, М. Пантелеев
Биохимия. 2020, 85, 1489-1499
Expression, Purification, and Regulation of Two Isoforms of the Inositol 1,4,5-Trisphosphate 3-Kinase
P. Woodring, J. Garrison
Journal of Biological Chemistry. 1997, 272, 30447-30454
Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes
M. De Pittà, M. Goldberg, V. Volman, H. Berry, E. Ben-Jacob
Journal of Biological Physics. 2009, 35, 383-411
Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations
H. XIA, G. YANG
Cell Research. 2005, 15, 83-91
Regulation of platelet plug formation by phosphoinositide metabolism
S. Min, C. Abrams
Blood. 2013, 122, 1358-1365
Platelet Signal Transduction. In: Michelson AD, editor. Platelets (Fourth Edition)
Lee RH, Stefanini L, Bergmeier W.
Academic Press. 2019, , 329-48
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin
G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli
Nature. 2002, 420, 85-89
Platelets lacking PIP5KIγ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion
Y. Wang, L. Zhao, A. Suzuki, L. Lian, S. Min, Z. Wang, R. Litvinov, T. Stalker, T. Yago, A. Klopocki, D. Schmidtke, H. Yin, J. Choi, R. McEver, J. Weisel, J. Hartwig, C. Abrams
Blood. 2013, 121, 2743-2752
The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis
C. Valet, S. Severin, G. Chicanne, P. Laurent, F. Gaits-Iacovoni, M. Gratacap, B. Payrastre
Advances in Biological Regulation. 2016, 61, 33-41
Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy
A. Moroi, S. Watson
Biochemical Pharmacology. 2015, 94, 186-194
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert
Biochemical Journal. 2017, 474, 539-556
Different roles of SHIP1 according to the cell context: The example of blood platelets
M. Gratacap, S. Séverin, G. Chicanne, M. Plantavid, B. Payrastre
Advances in Enzyme Regulation. 2008, 48, 240-252
SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels
S. GIURIATO, X. PESESSE, S. BODIN, T. SASAKI, C. VIALA, E. MARION, J. PENNINGER, S. SCHURMANS, C. ERNEUX, B. PAYRASTRE
Biochemical Journal. 2003, 376, 199-207
Deficiency of Src homology 2 domain–containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth
S. Séverin, M. Gratacap, N. Lenain, L. Alvarez, E. Hollande, J. Penninger, C. Gachet, M. Plantavid, B. Payrastre
Journal of Clinical Investigation. 2007, 117, 944-952
Effects of bacterial lipopolysaccharides on platelet function: inhibition of weak platelet activation
A. Martyanov, A. Maiorov, A. Filkova, A. Ryabykh, G. Svidelskaya, E. Artemenko, S. Gambaryan, M. Panteleev, A. Sveshnikova
Scientific Reports. 2020, 10,
GMP and cGMP-dependent protein kinase in platelets and blood cells
Walter U, Gambaryan S
Handbook of Experimental Pharmacology. 2009, , 533-48
A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?
S. Gambaryan, D. Tsikas
Amino Acids. 2015, 47, 1779-1793
A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation
M. Mischnik, D. Boyanova, K. Hubertus, J. Geiger, N. Philippi, M. Dittrich, G. Wangorsch, J. Timmer, T. Dandekar
Molecular BioSystems. 2013, 9, 1326
Activation of Platelet Function Through G Protein–Coupled Receptors
S. Offermanns
Circulation Research. 2006, 99, 1293-1304
Kinetic diversity in G-protein-coupled receptor signalling
V. Katanaev, M. Chornomorets
Biochemical Journal. 2007, 401, 485-495
Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector
F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross
Current Biology. 2010, 20, 1327-1335
A quantitative characterization of the yeast heterotrimeric G protein cycle
T. Yi, H. Kitano, M. Simon
Proceedings of the National Academy of Sciences. 2003, 100, 10764-10769
Receptor-Mediated Activation of Heterotrimeric G-Proteins in Living Cells
C. Janetopoulos
Science. 2001, 291, 2408-2411
A Direct and Functional Interaction Between Go and Rab5 During G Protein-Coupled Receptor Signaling
V. Purvanov, A. Koval, V. Katanaev
Science Signaling. 2010, 3, ra65-ra65
Double Suppression of the Gα Protein Activity by RGS Proteins
C. Lin, A. Koval, S. Tishchenko, A. Gabdulkhakov, U. Tin, G. Solis, V. Katanaev
Molecular Cell. 2014, 53, 663-671
High capacity in G protein-coupled receptor signaling
A. Keshelava, G. Solis, M. Hersch, A. Koval, M. Kryuchkov, S. Bergmann, V. Katanaev
Nature Communications. 2018, 9,
G PROTEIN βγ SUBUNITS
D. Clapham, E. Neer
Annual Review of Pharmacology and Toxicology. 1997, 37, 167-203
Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors
E. Hermans
Pharmacology & Therapeutics. 2003, 99, 25-44
Bifurcation of Lipid and Protein Kinase Signals of PI3K to the Protein Kinases PKB and MAPK
T. Bondeva
Science. 1998, 282, 293-296
Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector
F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross
Current Biology. 2010, 20, 1327-1335
The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C
P. Goldschmidt-Clermont, L. Machesky, J. Baldassare, T. Pollard
Science. 1990, 247, 1575-1578
Structure, Function, and Control of Phosphoinositide-Specific Phospholipase C
M. Rebecchi, S. Pentyala
Physiological Reviews. 2000, 80, 1291-1335
Catalysis by Phospholipase C δ1 Requires That Ca2+ Bind to the Catalytic Domain, but Not the C2 Domain
J. Grobler, J. Hurley
Biochemistry. 1998, 37, 5020-5028
Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits
Lee SB, Shin SH, Hepler JR, Gilman AG, Rhee SG.
Journal of Biological Chemistry. 1993, 268, 25952–7
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways
J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi
Blood. 2012, 120, e73-e82
Protein Kinase C in Oncogenic Transformation and Cell Polarity. In: Kramer IjM, editor. Signal Transduction (Third Edition)
Kramer IjM.
Boston: Academic Press. 2016, , 529–88
Purification and characterization of cytosolic diacylglycerol kinases of human platelets.
Y. Yada, T. Ozeki, H. Kanoh, Y. Nozawa
Journal of Biological Chemistry. 1990, 265, 19237-19243
Heterodimeric Phosphoinositide 3-Kinase Consisting of p85 and p110β Is Synergistically Activated by the βγ Subunits of G Proteins and Phosphotyrosyl Peptide
H. Kurosu, T. Maehama, T. Okada, T. Yamamoto, S. Hoshino, Y. Fukui, M. Ui, O. Hazeki, T. Katada
Journal of Biological Chemistry. 1997, 272, 24252-24256
Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets
M Bauer, M Retzer, J I Wilde, P Maschberger, M Essler, M Aepfelbacher, S P Watson, W Siess
Blood. 1999, , 1665–72
Platelet Adenylyl Cyclase Activity: A Biological Marker for Major Depression and Recent Drug Use
L. Hines, B. Tabakoff
Biological Psychiatry. 2005, 58, 955-962
G-Protein–Coupled Receptors Signaling Pathways in New Antiplatelet Drug Development
P. Gurbel, A. Kuliopulos, U. Tantry
Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 500-512
Fueling Platelets
S. Whiteheart
Arteriosclerosis, Thrombosis, and Vascular Biology. 2017, 37, 1592-1594
Signaling through Gi Family Members in Platelets
J. Yang, J. Wu, H. Jiang, R. Mortensen, S. Austin, D. Manning, D. Woulfe, L. Brass
Journal of Biological Chemistry. 2002, 277, 46035-46042
G-Protein Coupled Receptor Resensitization - Appreciating the Balancing Act of Receptor Function
M. L. Mohan, N. T. Vasudevan, M. K. Gupta, E. E. Martelli, S. V. Naga Prasad
Current Molecular Pharmacology. 2013, 5, 350-361
Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis
A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova
International Journal of Molecular Sciences. 2020, 21, 3035
Domains specifying thrombin–receptor interaction
T. Vu, V. Wheaton, D. Hung, I. Charo, S. Coughlin
Nature. 1991, 353, 674-677
RhoA downstream of Gq and G12/13 pathways regulates protease-activated receptor-mediated dense granule release in platelets
J. Jin, Y. Mao, D. Thomas, S. Kim, J. Daniel, S. Kunapuli
Biochemical Pharmacology. 2009, 77, 835-844
Primary haemostasis: newer insights
M. Berndt, P. Metharom, R. Andrews
Haemophilia. 2014, 20, 15-22
New Fundamentals in Hemostasis
H. Versteeg, J. Heemskerk, M. Levi, P. Reitsma
Physiological Reviews. 2013, 93, 327-358
Adenosine diphosphate (ADP)–induced thromboxane A2generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors
J. Jin, T. Quinton, J. Zhang, S. Rittenhouse, S. Kunapuli
Blood. 2002, 99, 193-198
Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis
L. Jennings
Thrombosis and Haemostasis. 2009, 102, 248-257
Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events
A. Gear
Canadian Journal of Physiology and Pharmacology. 1994, 72, 285-294
Defective platelet activation in Gαq-deficient mice
S. Offermanns, C. Toombs, Y. Hu, M. Simon
Nature. 1997, 389, 183-186
Metabolism of adenine nucleotides in human blood.
S. Coade, J. Pearson
Circulation Research. 1989, 65, 531-537
Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and of inhibiting ADP-induced platelet aggregation
J. LUTHJE, A. SCHOMBURG, A. OGILVIE
European Journal of Biochemistry. 1988, 175, 285-289
The evolution of megakaryocytes to platelets
P. Nurden, C. Poujol, A. Nurden
Baillière's Clinical Haematology. 1997, 10, 1-27
Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets
Nakano T, Hanasaki K, Arita H.
Journal of Biological Chemistry. 1989, 264, 5400-6
Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase
R. Beigi, E. Kobatake, M. Aizawa, G. Dubyak
American Journal of Physiology-Cell Physiology. 1999, 276, C267-C278
Persistence of thromboxane A2-like material and platelet release-inducing activity in plasma.
J. Smith, C. Ingerman, M. Silver
Journal of Clinical Investigation. 1976, 58, 1119-1122
Signaling During Platelet Adhesion and Activation
Z. Li, M. Delaney, K. O'Brien, X. Du
Arteriosclerosis, Thrombosis, and Vascular Biology. 2010, 30, 2341-2349
Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels
C. Mercado, F. Kilic
Molecular Interventions. 2010, 10, 231-241
Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach
A. Martin, D. Zlotnik, G. Bonete, E. Baron, B. Decouture, T. Belleville-Rolland, B. Le Bonniec, S. Poirault-Chassac, M. Alessi, P. Gaussem, A. Godier, C. Bachelot-Loza
European Journal of Pharmacology. 2020, 866, 172798
Platelet ITAM signaling
W. Bergmeier, L. Stefanini
Current Opinion in Hematology. 2013, 20, 445-450
Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity
Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier
Circulation Research. 2014, 114, 1174-1184
The Src, Syk, and Tec family kinases: Distinct types of molecular switches
J. Bradshaw
Cellular Signalling. 2010, 22, 1175-1184
Src family kinases: at the forefront of platelet activation
Y. Senis, A. Mazharian, J. Mori
Blood. 2014, 124, 2013-2024
Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B
J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965
Mechanisms of receptor tyrosine kinase activation in cancer
Z. Du, C. Lovly
Molecular Cancer. 2018, 17,
SH2 domains: modulators of nonreceptor tyrosine kinase activity
P. Filippakopoulos, S. Müller, S. Knapp
Current Opinion in Structural Biology. 2009, 19, 643-649
SH3 domain ligand binding: What's the consensus and where's the specificity?
K. Saksela, P. Permi
FEBS Letters. 2012, 586, 2609-2614
Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role
A. Schmaier, Z. Zou, A. Kazlauskas, L. Emert-Sedlak, K. Fong, K. Neeves, S. Maloney, S. Diamond, S. Kunapuli, J. Ware, L. Brass, T. Smithgall, K. Saksela, M. Kahn
Proceedings of the National Academy of Sciences. 2009, 106, 21167-21172
Molecular Mechanism of the Syk Activation Switch
E. Tsang, A. Giannetti, D. Shaw, M. Dinh, J. Tse, S. Gandhi, H. Ho, S. Wang, E. Papp, J. Bradshaw
Journal of Biological Chemistry. 2008, 283, 32650-32659
The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets
C. Hughes, B. Finney, F. Koentgen, K. Lowe, S. Watson
Blood. 2015, 125, 144-154
Dynamics of the Tec-family tyrosine kinase SH3 domains
J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales
Protein Science. 2016, 25, 852-864
Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies
J. Shatzel, S. Olson, D. Tao, O. McCarty, A. Danilov, T. DeLoughery
Journal of Thrombosis and Haemostasis. 2017, 15, 835-847
The transmembrane adapter LAT plays a central role in immune receptor signalling
P. Wonerow, S. Watson
Oncogene. 2001, 20, 6273-6283
Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis
L. Musumeci, M. Kuijpers, K. Gilio, A. Hego, E. Théâtre, L. Maurissen, M. Vandereyken, C. Diogo, C. Lecut, W. Guilmain, E. Bobkova, J. Eble, R. Dahl, P. Drion, J. Rascon, Y. Mostofi, H. Yuan, E. Sergienko, T. Chung, M. Thiry, Y. Senis, M. Moutschen, T. Mustelin, P. Lancellotti, J. Heemskerk, L. Tautz, C. Oury, S. Rahmouni
Circulation. 2015, 131, 656-668
ITIM receptors: more than just inhibitors of platelet activation
C. Coxon, M. Geer, Y. Senis
Blood. 2017, 129, 3407-3418
Functional significance of the platelet immune receptors GPVI and CLEC-2
J. Rayes, S. Watson, B. Nieswandt
Journal of Clinical Investigation. 2019, 129, 12-23
GPVI and CLEC-2 in hemostasis and vascular integrity
S. WATSON, J. HERBERT, A. POLLITT
Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467
Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis
M. Arman, K. Krauel
Journal of Thrombosis and Haemostasis. 2015, 13, 893-908
Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1
N. Prévost, D. Woulfe, M. Tognolini, T. Tanaka, W. Jian, R. Fortna, H. Jiang, L. Brass
Blood. 2004, 103, 1348-1355
SLAM Family Receptors and SAP Adaptors in Immunity
J. Cannons, S. Tangye, P. Schwartzberg
Annual Review of Immunology. 2011, 29, 665-705
Platelet Inhibitory Receptors. In: Michelson AD, editor. Platelets (Fourth Edition)
Nagy Z, Senis YA
Academic Press. 2019, , 279-93
Minimal regulation of platelet activity by PECAM-1
T. Dhanjal, E. Ross, J. Auger, O. Mccarty, C. Hughes, Y. Senis, S. Watson
Platelets. 2007, 18, 56-67
Collagen, Convulxin, and Thrombin Stimulate Aggregation-independent Tyrosine Phosphorylation of CD31 in Platelets
M. Cicmil, J. Thomas, T. Sage, F. Barry, M. Leduc, C. Bon, J. Gibbins
Journal of Biological Chemistry. 2000, 275, 27339-27347
Thrombin-induced association of SHP-2 with multiple tyrosine-phosphorylated proteins in human platelets
C. Edmead, D. Crosby, M. Southcott, A. Poole
FEBS Letters. 1999, 459, 27-32
Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-γ1 with PECAM-1/CD31
N. Pumphrey, V. Taylor, S. Freeman, M. Douglas, P. Bradfield, S. Young, J. Lord, M. Wakelam, I. Bird, M. Salmon, C. Buckley
FEBS Letters. 1999, 450, 77-83
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148
J. Mori, Z. Nagy, G. Di Nunzio, C. Smith, M. Geer, R. Al Ghaithi, J. van Geffen, S. Heising, L. Boothman, B. Tullemans, J. Correia, L. Tee, M. Kuijpers, P. Harrison, J. Heemskerk, G. Jarvis, A. Tarakhovsky, A. Weiss, A. Mazharian, Y. Senis
Blood. 2018, 131, 1122-1144
An Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b
C. Coxon, A. Sadler, J. Huo, R. Campbell
PLoS ONE. 2012, 7, e49543
Fibrin and D-dimer bind to monomeric GPVI
M. Onselaer, A. Hardy, C. Wilson, X. Sanchez, A. Babar, J. Miller, C. Watson, S. Watson, A. Bonna, H. Philipp