Русский
Библиографические ссылки статьи: “Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные взаимоотношения. Часть 2: Рецепторы”
  1. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion

    M. Panteleev, N. Dashkevich, F. Ataullakhanov

    Thrombosis Research. 2015, 136, 699-711

  2. Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition

    T. Getz, R. Piatt, B. Petrich, D. Monroe, N. Mackman, W. Bergmeier

    Journal of Thrombosis and Haemostasis. 2015, 13, 417-425

  3. Platelets and vascular integrity

    C. Deppermann

    Platelets. 2018, 29, 549-555

  4. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor

    A. Martyanov, V. Kaneva, M. Panteleev, A. Sveshnikova

    Oncohematology. 2018, 13, 83-90

  5. How platelets safeguard vascular integrity

    B. HO-TIN-NOÉ, M. DEMERS, D. WAGNER

    Journal of Thrombosis and Haemostasis. 2011, 9, 56-65

  6. Platelet ITAM signaling is critical for vascular integrity in inflammation

    Yacine Boulaftali, Paul R. Hess, Todd M. Getz, Agnieszka Cholka, Moritz Stolla, Nigel Mackman, A. Phillip Owens III, Jerry Ware, Mark L. Kahn, Wolfgang Bergmeier

    The Journal of Clinical Investigation. 2013, 123 (2), 908-916

  7. Editorial: Platelets and Immune Responses During Thromboinflammation

    M. Schattner, C. Jenne, S. Negrotto, B. Ho-Tin-Noe

    Frontiers in Immunology. 2020, 11,

  8. The dual role of platelet-innate immune cell interactions in thrombo-inflammation

    J. Rayes, J. Bourne, A. Brill, S. Watson

    Research and Practice in Thrombosis and Haemostasis. 2020, 4, 23-35

  9. Lipopolysaccharide Signaling without a Nucleus: Kinase Cascades Stimulate Platelet Shedding of Proinflammatory IL-1β–Rich Microparticles

    G. Brown, T. McIntyre

    The Journal of Immunology. 2011, 186, 5489-5496

  10. Platelet functional responses and signalling: the molecular relationship. Part 1: responses.

    A. Sveshnikova, M. Stepanyan, M. Panteleev

    Systems Biology and Physiology Reports. 2021, 1, 20-28

  11. Platelets: production, morphology and ultrastructure

    Thon JN, Italiano JE

    Handbook of Experimental Pharmacology. 2012, , 3-22

  12. Platelet shape change and spreading

    Aslan JE, Itakura A, Gertz JM, McCarty OJT

    Methods in Molecular Biology. 2012, 788, 91-100

  13. Tubulin in Platelets: When the Shape Matters

    E. Cuenca-Zamora, F. Ferrer-Marín, J. Rivera, R. Teruel-Montoya

    International Journal of Molecular Sciences. 2019, 20, 3484

  14. New explanations for old observations: marginal band coiling during platelet activation

    K. Sadoul

    Journal of Thrombosis and Haemostasis. 2015, 13, 333-346

  15. Actin dynamics in platelets

    Bearer EL, Prakash JM, Li Z.

    International Review of Cytology. 2002, 217, 137-82

  16. Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs

    E. Shin, H. Park, J. Noh, K. Lim, J. Chung

    Biomolecules & Therapeutics. 2017, 25, 223-230

  17. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways

    J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi

    Blood. 2012, 120, e73-e82

  18. Platelet signaling

    Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF

    Handbook of Experimental Pharmacology. 2012, , 59-85

  19. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis

    M. Tomaiuolo, L. Brass, T. Stalker

    Interventional Cardiology Clinics. 2017, 6, 1-12

  20. RAP GTPases and platelet integrin signaling

    L. Stefanini, W. Bergmeier

    Platelets. 2019, 30, 41-47

  21. Platelet Secretion. In: Michelson AD, editor. Platelets (Fourth Edition)

    Flaumenhaft R, Sharda A

    Academic Press. 2019, , 349-70

  22. Sorting machineries: how platelet-dense granules differ from α-granules

    Y. Chen, Y. Yuan, W. Li

    Bioscience Reports. 2018, 38,

  23. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling

    A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev

    Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057

  24. Procoagulant Platelets Form an α-Granule Protein-covered “Cap” on Their Surface That Promotes Their Attachment to Aggregates

    A. Abaeva, M. Canault, Y. Kotova, S. Obydennyy, A. Yakimenko, N. Podoplelova, V. Kolyadko, H. Chambost, A. Mazurov, F. Ataullakhanov, A. Nurden, M. Alessi, M. Panteleev

    Journal of Biological Chemistry. 2013, 288, 29621-29632

  25. Regulating thrombus growth and stability to achieve an optimal response to injury

    L. BRASS, K. WANNEMACHER, P. MA, T. STALKER

    Journal of Thrombosis and Haemostasis. 2011, 9, 66-75

  26. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface

    D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47

  27. Platelet biology and functions: new concepts and clinical perspectives

    P. van der Meijden, J. Heemskerk

    Nature Reviews Cardiology. 2019, 16, 166-179

  28. Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations

    F. Balabin, A. Sveshnikova

    Mathematical Biosciences. 2016, 276, 67-74

  29. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation

    S. Obydennyy, A. Sveshnikova, F. Ataullakhanov, M. Panteleev

    Journal of Thrombosis and Haemostasis. 2016, 14, 1867-1881

  30. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling

    A. Martyanov, F. Balabin, J. Dunster, M. Panteleev, J. Gibbins, A. Sveshnikova

    Biophysical Journal. 2020, 118, 2641-2655

  31. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1

    A. Sveshnikova, F. Ataullakhanov, M. Panteleev

    Molecular BioSystems. 2015, 11, 1052-1060

  32. Calcium signaling in platelets

    D. VARGA-SZABO, A. BRAUN, B. NIESWANDT

    Journal of Thrombosis and Haemostasis. 2009, 7, 1057-1066

  33. Agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum

    M. Chalmers, M. Schell, P. Thorn

    Biochemical Journal. 2006, 394, 57-66

  34. Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets

    S. Obydennyi, E. Artemenko, A. Sveshnikova, A. Ignatova, T. Varlamova, S. Gambaryan, G. Lomakina, N. Ugarova, I. Kireev, F. Ataullakhanov, G. Novichkova, A. Maschan, A. Shcherbina, M. Panteleev

    Haematologica. 2020, 105, 1095-1106

  35. Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol

    A. Södergren, S. Ramström

    Scientific Reports. 2018, 8,

  36. Программируемая клеточная смерть и функциональная активность тромбоцитов при онкогематологических заболеваниях

    А. Мартьянов, А. Игнатова, Г. Свидельская, Е. Пономаренко, С. Гамбарян, А. Свешникова, М. Пантелеев

    Биохимия. 2020, 85, 1489-1499

  37. Expression, Purification, and Regulation of Two Isoforms of the Inositol 1,4,5-Trisphosphate 3-Kinase

    P. Woodring, J. Garrison

    Journal of Biological Chemistry. 1997, 272, 30447-30454

  38. Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes

    M. De Pittà, M. Goldberg, V. Volman, H. Berry, E. Ben-Jacob

    Journal of Biological Physics. 2009, 35, 383-411

  39. Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations

    H. XIA, G. YANG

    Cell Research. 2005, 15, 83-91

  40. Regulation of platelet plug formation by phosphoinositide metabolism

    S. Min, C. Abrams

    Blood. 2013, 122, 1358-1365

  41. Platelet Signal Transduction. In: Michelson AD, editor. Platelets (Fourth Edition)

    Lee RH, Stefanini L, Bergmeier W.

    Academic Press. 2019, , 329-48

  42. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin

    G. Di Paolo, L. Pellegrini, K. Letinic, G. Cestra, R. Zoncu, S. Voronov, S. Chang, J. Guo, M. Wenk, P. De Camilli

    Nature. 2002, 420, 85-89

  43. Platelets lacking PIP5KIγ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion

    Y. Wang, L. Zhao, A. Suzuki, L. Lian, S. Min, Z. Wang, R. Litvinov, T. Stalker, T. Yago, A. Klopocki, D. Schmidtke, H. Yin, J. Choi, R. McEver, J. Weisel, J. Hartwig, C. Abrams

    Blood. 2013, 121, 2743-2752

  44. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis

    C. Valet, S. Severin, G. Chicanne, P. Laurent, F. Gaits-Iacovoni, M. Gratacap, B. Payrastre

    Advances in Biological Regulation. 2016, 61, 33-41

  45. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy

    A. Moroi, S. Watson

    Biochemical Pharmacology. 2015, 94, 186-194

  46. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain

    T. Ni, A. Kalli, F. Naughton, L. Yates, O. Naneh, M. Kozorog, G. Anderluh, M. Sansom, R. Gilbert

    Biochemical Journal. 2017, 474, 539-556

  47. Different roles of SHIP1 according to the cell context: The example of blood platelets

    M. Gratacap, S. Séverin, G. Chicanne, M. Plantavid, B. Payrastre

    Advances in Enzyme Regulation. 2008, 48, 240-252

  48. SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels

    S. GIURIATO, X. PESESSE, S. BODIN, T. SASAKI, C. VIALA, E. MARION, J. PENNINGER, S. SCHURMANS, C. ERNEUX, B. PAYRASTRE

    Biochemical Journal. 2003, 376, 199-207

  49. Deficiency of Src homology 2 domain–containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth

    S. Séverin, M. Gratacap, N. Lenain, L. Alvarez, E. Hollande, J. Penninger, C. Gachet, M. Plantavid, B. Payrastre

    Journal of Clinical Investigation. 2007, 117, 944-952

  50. Effects of bacterial lipopolysaccharides on platelet function: inhibition of weak platelet activation

    A. Martyanov, A. Maiorov, A. Filkova, A. Ryabykh, G. Svidelskaya, E. Artemenko, S. Gambaryan, M. Panteleev, A. Sveshnikova

    Scientific Reports. 2020, 10,

  51. GMP and cGMP-dependent protein kinase in platelets and blood cells

    Walter U, Gambaryan S

    Handbook of Experimental Pharmacology. 2009, , 533-48

  52. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite?

    S. Gambaryan, D. Tsikas

    Amino Acids. 2015, 47, 1779-1793

  53. A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation

    M. Mischnik, D. Boyanova, K. Hubertus, J. Geiger, N. Philippi, M. Dittrich, G. Wangorsch, J. Timmer, T. Dandekar

    Molecular BioSystems. 2013, 9, 1326

  54. Activation of Platelet Function Through G Protein–Coupled Receptors

    S. Offermanns

    Circulation Research. 2006, 99, 1293-1304

  55. Kinetic diversity in G-protein-coupled receptor signalling

    V. Katanaev, M. Chornomorets

    Biochemical Journal. 2007, 401, 485-495

  56. Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector

    F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross

    Current Biology. 2010, 20, 1327-1335

  57. A quantitative characterization of the yeast heterotrimeric G protein cycle

    T. Yi, H. Kitano, M. Simon

    Proceedings of the National Academy of Sciences. 2003, 100, 10764-10769

  58. Receptor-Mediated Activation of Heterotrimeric G-Proteins in Living Cells

    C. Janetopoulos

    Science. 2001, 291, 2408-2411

  59. A Direct and Functional Interaction Between Go and Rab5 During G Protein-Coupled Receptor Signaling

    V. Purvanov, A. Koval, V. Katanaev

    Science Signaling. 2010, 3, ra65-ra65

  60. Double Suppression of the Gα Protein Activity by RGS Proteins

    C. Lin, A. Koval, S. Tishchenko, A. Gabdulkhakov, U. Tin, G. Solis, V. Katanaev

    Molecular Cell. 2014, 53, 663-671

  61. High capacity in G protein-coupled receptor signaling

    A. Keshelava, G. Solis, M. Hersch, A. Koval, M. Kryuchkov, S. Bergmann, V. Katanaev

    Nature Communications. 2018, 9,

  62. G PROTEIN βγ SUBUNITS

    D. Clapham, E. Neer

    Annual Review of Pharmacology and Toxicology. 1997, 37, 167-203

  63. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors

    E. Hermans

    Pharmacology & Therapeutics. 2003, 99, 25-44

  64. Bifurcation of Lipid and Protein Kinase Signals of PI3K to the Protein Kinases PKB and MAPK

    T. Bondeva

    Science. 1998, 282, 293-296

  65. Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector

    F. Philip, G. Kadamur, R. Silos, J. Woodson, E. Ross

    Current Biology. 2010, 20, 1327-1335

  66. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C

    P. Goldschmidt-Clermont, L. Machesky, J. Baldassare, T. Pollard

    Science. 1990, 247, 1575-1578

  67. Structure, Function, and Control of Phosphoinositide-Specific Phospholipase C

    M. Rebecchi, S. Pentyala

    Physiological Reviews. 2000, 80, 1291-1335

  68. Catalysis by Phospholipase C δ1 Requires That Ca2+ Bind to the Catalytic Domain, but Not the C2 Domain

    J. Grobler, J. Hurley

    Biochemistry. 1998, 37, 5020-5028

  69. Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits

    Lee SB, Shin SH, Hepler JR, Gilman AG, Rhee SG.

    Journal of Biological Chemistry. 1993, 268, 25952–7

  70. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways

    J. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter, L. Martens, J. Geiger, A. Sickmann, R. Zahedi

    Blood. 2012, 120, e73-e82

  71. Protein Kinase C in Oncogenic Transformation and Cell Polarity. In: Kramer IjM, editor. Signal Transduction (Third Edition)

    Kramer IjM.

    Boston: Academic Press. 2016, , 529–88

  72. Purification and characterization of cytosolic diacylglycerol kinases of human platelets.

    Y. Yada, T. Ozeki, H. Kanoh, Y. Nozawa

    Journal of Biological Chemistry. 1990, 265, 19237-19243

  73. Heterodimeric Phosphoinositide 3-Kinase Consisting of p85 and p110β Is Synergistically Activated by the βγ Subunits of G Proteins and Phosphotyrosyl Peptide

    H. Kurosu, T. Maehama, T. Okada, T. Yamamoto, S. Hoshino, Y. Fukui, M. Ui, O. Hazeki, T. Katada

    Journal of Biological Chemistry. 1997, 272, 24252-24256

  74. Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets

    M Bauer, M Retzer, J I Wilde, P Maschberger, M Essler, M Aepfelbacher, S P Watson, W Siess

    Blood. 1999, , 1665–72

  75. Platelet Adenylyl Cyclase Activity: A Biological Marker for Major Depression and Recent Drug Use

    L. Hines, B. Tabakoff

    Biological Psychiatry. 2005, 58, 955-962

  76. G-Protein–Coupled Receptors Signaling Pathways in New Antiplatelet Drug Development

    P. Gurbel, A. Kuliopulos, U. Tantry

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 500-512

  77. Fueling Platelets

    S. Whiteheart

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2017, 37, 1592-1594

  78. Signaling through Gi Family Members in Platelets

    J. Yang, J. Wu, H. Jiang, R. Mortensen, S. Austin, D. Manning, D. Woulfe, L. Brass

    Journal of Biological Chemistry. 2002, 277, 46035-46042

  79. G-Protein Coupled Receptor Resensitization - Appreciating the Balancing Act of Receptor Function

    M. L. Mohan, N. T. Vasudevan, M. K. Gupta, E. E. Martelli, S. V. Naga Prasad

    Current Molecular Pharmacology. 2013, 5, 350-361

  80. Heterogeneity of Integrin αIIbβ3 Function in Pediatric Immune Thrombocytopenia Revealed by Continuous Flow Cytometry Analysis

    A. Martyanov, D. Morozova, M. Sorokina, A. Filkova, D. Fedorova, S. Uzueva, E. Suntsova, G. Novichkova, P. Zharkov, M. Panteleev, A. Sveshnikova

    International Journal of Molecular Sciences. 2020, 21, 3035

  81. Domains specifying thrombin–receptor interaction

    T. Vu, V. Wheaton, D. Hung, I. Charo, S. Coughlin

    Nature. 1991, 353, 674-677

  82. RhoA downstream of Gq and G12/13 pathways regulates protease-activated receptor-mediated dense granule release in platelets

    J. Jin, Y. Mao, D. Thomas, S. Kim, J. Daniel, S. Kunapuli

    Biochemical Pharmacology. 2009, 77, 835-844

  83. Primary haemostasis: newer insights

    M. Berndt, P. Metharom, R. Andrews

    Haemophilia. 2014, 20, 15-22

  84. New Fundamentals in Hemostasis

    H. Versteeg, J. Heemskerk, M. Levi, P. Reitsma

    Physiological Reviews. 2013, 93, 327-358

  85. Adenosine diphosphate (ADP)–induced thromboxane A2generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors

    J. Jin, T. Quinton, J. Zhang, S. Rittenhouse, S. Kunapuli

    Blood. 2002, 99, 193-198

  86. Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis

    L. Jennings

    Thrombosis and Haemostasis. 2009, 102, 248-257

  87. Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events

    A. Gear

    Canadian Journal of Physiology and Pharmacology. 1994, 72, 285-294

  88. Defective platelet activation in Gαq-deficient mice

    S. Offermanns, C. Toombs, Y. Hu, M. Simon

    Nature. 1997, 389, 183-186

  89. Metabolism of adenine nucleotides in human blood.

    S. Coade, J. Pearson

    Circulation Research. 1989, 65, 531-537

  90. Demonstration of a novel ecto-enzyme on human erythrocytes, capable of degrading ADP and of inhibiting ADP-induced platelet aggregation

    J. LUTHJE, A. SCHOMBURG, A. OGILVIE

    European Journal of Biochemistry. 1988, 175, 285-289

  91. The evolution of megakaryocytes to platelets

    P. Nurden, C. Poujol, A. Nurden

    Baillière's Clinical Haematology. 1997, 10, 1-27

  92. Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets

    Nakano T, Hanasaki K, Arita H.

    Journal of Biological Chemistry. 1989, 264, 5400-6

  93. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase

    R. Beigi, E. Kobatake, M. Aizawa, G. Dubyak

    American Journal of Physiology-Cell Physiology. 1999, 276, C267-C278

  94. Persistence of thromboxane A2-like material and platelet release-inducing activity in plasma.

    J. Smith, C. Ingerman, M. Silver

    Journal of Clinical Investigation. 1976, 58, 1119-1122

  95. Signaling During Platelet Adhesion and Activation

    Z. Li, M. Delaney, K. O'Brien, X. Du

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2010, 30, 2341-2349

  96. Molecular Mechanisms of SERT in Platelets: Regulation of Plasma Serotonin Levels

    C. Mercado, F. Kilic

    Molecular Interventions. 2010, 10, 231-241

  97. Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach

    A. Martin, D. Zlotnik, G. Bonete, E. Baron, B. Decouture, T. Belleville-Rolland, B. Le Bonniec, S. Poirault-Chassac, M. Alessi, P. Gaussem, A. Godier, C. Bachelot-Loza

    European Journal of Pharmacology. 2020, 866, 172798

  98. Platelet ITAM signaling

    W. Bergmeier, L. Stefanini

    Current Opinion in Hematology. 2013, 20, 445-450

  99. Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity

    Y. Boulaftali, P. Hess, M. Kahn, W. Bergmeier

    Circulation Research. 2014, 114, 1174-1184

  100. The Src, Syk, and Tec family kinases: Distinct types of molecular switches

    J. Bradshaw

    Cellular Signalling. 2010, 22, 1175-1184

  101. Src family kinases: at the forefront of platelet activation

    Y. Senis, A. Mazharian, J. Mori

    Blood. 2014, 124, 2013-2024

  102. Dominant Role of the Protein-Tyrosine Phosphatase CD148 in Regulating Platelet Activation Relative to Protein-Tyrosine Phosphatase-1B

    J. Mori, Y. Wang, S. Ellison, S. Heising, B. Neel, M. Tremblay, S. Watson, Y. Senis

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32, 2956-2965

  103. Mechanisms of receptor tyrosine kinase activation in cancer

    Z. Du, C. Lovly

    Molecular Cancer. 2018, 17,

  104. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    P. Filippakopoulos, S. Müller, S. Knapp

    Current Opinion in Structural Biology. 2009, 19, 643-649

  105. SH3 domain ligand binding: What's the consensus and where's the specificity?

    K. Saksela, P. Permi

    FEBS Letters. 2012, 586, 2609-2614

  106. Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role

    A. Schmaier, Z. Zou, A. Kazlauskas, L. Emert-Sedlak, K. Fong, K. Neeves, S. Maloney, S. Diamond, S. Kunapuli, J. Ware, L. Brass, T. Smithgall, K. Saksela, M. Kahn

    Proceedings of the National Academy of Sciences. 2009, 106, 21167-21172

  107. Molecular Mechanism of the Syk Activation Switch

    E. Tsang, A. Giannetti, D. Shaw, M. Dinh, J. Tse, S. Gandhi, H. Ho, S. Wang, E. Papp, J. Bradshaw

    Journal of Biological Chemistry. 2008, 283, 32650-32659

  108. The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets

    C. Hughes, B. Finney, F. Koentgen, K. Lowe, S. Watson

    Blood. 2015, 125, 144-154

  109. Dynamics of the Tec-family tyrosine kinase SH3 domains

    J. Roberts, S. Tarafdar, R. Joseph, A. Andreotti, T. Smithgall, J. Engen, T. Wales

    Protein Science. 2016, 25, 852-864

  110. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies

    J. Shatzel, S. Olson, D. Tao, O. McCarty, A. Danilov, T. DeLoughery

    Journal of Thrombosis and Haemostasis. 2017, 15, 835-847

  111. The transmembrane adapter LAT plays a central role in immune receptor signalling

    P. Wonerow, S. Watson

    Oncogene. 2001, 20, 6273-6283

  112. Dual-Specificity Phosphatase 3 Deficiency or Inhibition Limits Platelet Activation and Arterial Thrombosis

    L. Musumeci, M. Kuijpers, K. Gilio, A. Hego, E. Théâtre, L. Maurissen, M. Vandereyken, C. Diogo, C. Lecut, W. Guilmain, E. Bobkova, J. Eble, R. Dahl, P. Drion, J. Rascon, Y. Mostofi, H. Yuan, E. Sergienko, T. Chung, M. Thiry, Y. Senis, M. Moutschen, T. Mustelin, P. Lancellotti, J. Heemskerk, L. Tautz, C. Oury, S. Rahmouni

    Circulation. 2015, 131, 656-668

  113. ITIM receptors: more than just inhibitors of platelet activation

    C. Coxon, M. Geer, Y. Senis

    Blood. 2017, 129, 3407-3418

  114. Functional significance of the platelet immune receptors GPVI and CLEC-2

    J. Rayes, S. Watson, B. Nieswandt

    Journal of Clinical Investigation. 2019, 129, 12-23

  115. GPVI and CLEC-2 in hemostasis and vascular integrity

    S. WATSON, J. HERBERT, A. POLLITT

    Journal of Thrombosis and Haemostasis. 2010, 8, 1456-1467

  116. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis

    M. Arman, K. Krauel

    Journal of Thrombosis and Haemostasis. 2015, 13, 893-908

  117. Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1

    N. Prévost, D. Woulfe, M. Tognolini, T. Tanaka, W. Jian, R. Fortna, H. Jiang, L. Brass

    Blood. 2004, 103, 1348-1355

  118. SLAM Family Receptors and SAP Adaptors in Immunity

    J. Cannons, S. Tangye, P. Schwartzberg

    Annual Review of Immunology. 2011, 29, 665-705

  119. Platelet Inhibitory Receptors. In: Michelson AD, editor. Platelets (Fourth Edition)

    Nagy Z, Senis YA

    Academic Press. 2019, , 279-93

  120. Minimal regulation of platelet activity by PECAM-1

    T. Dhanjal, E. Ross, J. Auger, O. Mccarty, C. Hughes, Y. Senis, S. Watson

    Platelets. 2007, 18, 56-67

  121. Collagen, Convulxin, and Thrombin Stimulate Aggregation-independent Tyrosine Phosphorylation of CD31 in Platelets

    M. Cicmil, J. Thomas, T. Sage, F. Barry, M. Leduc, C. Bon, J. Gibbins

    Journal of Biological Chemistry. 2000, 275, 27339-27347

  122. Thrombin-induced association of SHP-2 with multiple tyrosine-phosphorylated proteins in human platelets

    C. Edmead, D. Crosby, M. Southcott, A. Poole

    FEBS Letters. 1999, 459, 27-32

  123. Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-γ1 with PECAM-1/CD31

    N. Pumphrey, V. Taylor, S. Freeman, M. Douglas, P. Bradfield, S. Young, J. Lord, M. Wakelam, I. Bird, M. Salmon, C. Buckley

    FEBS Letters. 1999, 450, 77-83

  124. Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148

    J. Mori, Z. Nagy, G. Di Nunzio, C. Smith, M. Geer, R. Al Ghaithi, J. van Geffen, S. Heising, L. Boothman, B. Tullemans, J. Correia, L. Tee, M. Kuijpers, P. Harrison, J. Heemskerk, G. Jarvis, A. Tarakhovsky, A. Weiss, A. Mazharian, Y. Senis

    Blood. 2018, 131, 1122-1144

  125. An Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b

    C. Coxon, A. Sadler, J. Huo, R. Campbell

    PLoS ONE. 2012, 7, e49543

  126. Fibrin and D-dimer bind to monomeric GPVI

    M. Onselaer, A. Hardy, C. Wilson, X. Sanchez, A. Babar, J. Miller, C. Watson, S. Watson, A. Bonna, H. Philippou, A. Herr, D. Mezzano, R. Ariëns, S. Watson

    Blood Advances. 2017, 1, 1495-1504

  127. Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin

    M. Ahmed, V. Kaneva, S. Loyau, D. Nechipurenko, N. Receveur, M. Le Bris, E. Janus-Bell, M. Didelot, A. Rauch, S. Susen, N. Chakfé, F. Lanza, E. Gardiner, R. Andrews, M. Panteleev, C. Gachet, M. Jandrot-Perrus, P. Mangin

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2020, 40, 2127-2142

  128. Integrin αIIbβ3. In: Michelson AD, editor. Platelets (Fourth Edition)

    Bledzka K, Qin J, Plow EF.

    Academic Press. 2019, , 227–41

  129. Comparison of the GPVI inhibitors losartan and honokiol

    M. Onselaer, M. Nagy, C. Pallini, J. Pike, G. Perrella, L. Quintanilla, J. Eble, N. Poulter, J. Heemskerk, S. Watson

    Platelets. 2020, 31, 187-197

  130. Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets

    N. Poulter, A. Pollitt, D. Owen, E. Gardiner, R. Andrews, H. Shimizu, D. Ishikawa, D. Bihan, R. Farndale, M. Moroi, S. Watson, S. Jung

    Journal of Thrombosis and Haemostasis. 2017, 15, 549-564

  131. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts

    K. Komatsuya, K. Kaneko, K. Kasahara

    International Journal of Molecular Sciences. 2020, 21, 5539

  132. Role of PI3K/Akt signaling in memory CD8 T cell differentiation

    E. Kim, M. Suresh

    Frontiers in Immunology. 2013, 4,

  133. Platelets and vascular integrity: how platelets prevent bleeding in inflammation

    B. Ho-Tin-Noé, Y. Boulaftali, E. Camerer

    Blood. 2018, 131, 277-288

  134. Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells

    A. Pollitt, N. Poulter, E. Gitz, L. Navarro-Nuñez, Y. Wang, C. Hughes, S. Thomas, B. Nieswandt, M. Douglas, D. Owen, D. Jackson, M. Dustin, S. Watson

    Journal of Biological Chemistry. 2014, 289, 35695-35710

  135. Platelet GPIb complex as a target for anti-thrombotic drug development

    J. Clemetson, K. Clemetson

    Thrombosis and Haemostasis. 2008, 99, 473-479

  136. Targeting Integrin and Integrin Signaling in Treating Thrombosis

    B. Estevez, B. Shen, X. Du

    Arteriosclerosis, Thrombosis, and Vascular Biology. 2015, 35, 24-29

  137. Von Willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics

    L. Ju, Y. Chen, F. Zhou, H. Lu, M. Cruz, C. Zhu

    Thrombosis Research. 2015, 136, 606-612

  138. A short history of platelet glycoprotein Ib complex

    Clemetson K

    Thrombosis and Haemostasis. 2007, 98 (1), 63-8

  139. Association of a phospholipase A2 (14-3-3 protein) with the platelet glycoprotein Ib-IX complex

    X. Du, S. Harris, T. Tetaz, M. Ginsberg, M. Berndt

    Journal of Biological Chemistry. 1994, 269, 18287-18290

  140. The structure of the GPIb–filamin A complex

    F. Nakamura, R. Pudas, O. Heikkinen, P. Permi, I. Kilpeläinen, A. Munday, J. Hartwig, T. Stossel, J. Ylänne

    Blood. 2006, 107, 1925-1932

  141. A functional 14-3-3ζ–independent association of PI3-kinase with glycoprotein Ibα, the major ligand-binding subunit of the platelet glycoprotein Ib-IX-V complex

    F. Mu, R. Andrews, J. Arthur, A. Munday, S. Cranmer, S. Jackson, F. Stomski, A. Lopez, M. Berndt

    Blood. 2008, 111, 4580-4587

  142. Functional association of phosphoinositide-3-kinase with platelet glycoprotein Ibα, the major ligand-binding subunit of the glycoprotein Ib-IX-V complex

    F. MU, S. CRANMER, R. ANDREWS, M. BERNDT

    Journal of Thrombosis and Haemostasis. 2010, 8, 324-330

  143. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting

    J. Huang, X. Li, X. Shi, M. Zhu, J. Wang, S. Huang, X. Huang, H. Wang, L. Li, H. Deng, Y. Zhou, J. Mao, Z. Long, Z. Ma, W. Ye, J. Pan, X. Xi, J. Jin

    Journal of Hematology & Oncology. 2019, 12,

  144. The platelet Fc receptor, FcγRIIa

    J. Qiao, M. Al-Tamimi, R. Baker, R. Andrews, E. Gardiner

    Immunological Reviews. 2015, 268, 241-252

  145. Platelet Toll-like receptor expression and activation induced by lipopolysaccharide and sepsis

    T. Claushuis, A. Van Der Veen, J. Horn, M. Schultz, R. Houtkooper, C. Van ’T Veer, T. Van Der Poll

    Platelets. 2019, 30, 296-304

  146. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia

    C. Marín Oyarzún, A. Glembotsky, N. Goette, P. Lev, G. De Luca, M. Baroni Pietto, B. Moiraghi, M. Castro Ríos, A. Vicente, R. Marta, M. Schattner, P. Heller

    Frontiers in Immunology. 2020, 11,

  147. The inflammatory role of platelets via their TLRs and Siglec receptors

    F. Cognasse

    Frontiers in Immunology. 2015, 6,

  148. Моделирование секреции гранул при активации тромбоцитов через TLR4-рецептор

    Майоров А.С., Шепелюк Т.О., Балабин Ф.А., Мартьянов А.А., Нечипуренко Д.Ю., Свешникова А.Н.

    Биофизика. 2018, 63 (3), 475-483

  149. Akt signaling in platelets and thrombosis

    D. Woulfe

    Expert Review of Hematology. 2010, 3, 81-91

  150. IκB kinase phosphorylation of SNAP-23 controls platelet secretion

    Z. Karim, J. Zhang, M. Banerjee, M. Chicka, R. Al Hawas, T. Hamilton, P. Roche, S. Whiteheart

    Blood. 2013, 121, 4567-4574

  151. Platelet Toll-like receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction

    K. Hally, A. La Flamme, P. Larsen, S. Harding

    Thrombosis Research. 2017, 158, 8-15

  152. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2

    A. ASSINGER, M. LAKY, G. SCHABBAUER, A. HIRSCHL, E. BUCHBERGER, B. BINDER, I. VOLF

    Journal of Thrombosis and Haemostasis. 2011, 9, 799-809

  153. Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response Through Activation of Phosphoinositide 3-Kinase

    P. Blair, S. Rex, O. Vitseva, L. Beaulieu, K. Tanriverdi, S. Chakrabarti, C. Hayashi, C. Genco, M. Iafrati, J. Freedman

    Circulation Research. 2009, 104, 346-354

  154. Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4

    A. Assinger, M. Laky, S. Badrnya, A. Esfandeyari, I. Volf

    Thrombosis Research. 2012, 130, e73-e78

  155. The Role of Human Platelet Preparation for Toll-Like Receptors 2 and 4 Related Platelet Responsiveness

    J. Koessler, M. Niklaus, K. Weber, A. Koessler, S. Kuhn, M. Boeck, A. Kobsar

    TH Open. 2019, 03, e94-e102

  156. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production

    C. Nocella, R. Carnevale, S. Bartimoccia, M. Novo, R. Cangemi, D. Pastori, C. Calvieri, P. Pignatelli, F. Violi

    Thrombosis and Haemostasis. 2017, 117, 1558-1570

  157. The role of platelets in mediating a response to human influenza infection

    M. Koupenova, H. Corkrey, O. Vitseva, G. Manni, C. Pang, L. Clancy, C. Yao, J. Rade, D. Levy, J. Wang, R. Finberg, E. Kurt-Jones, J. Freedman

    Nature Communications. 2019, 10,

  158. Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis

    K. Hally, S. Fauteux-Daniel, H. Hamzeh-Cognasse, P. Larsen, F. Cognasse

    International Journal of Molecular Sciences. 2020, 21, 6150

  159. T granules in human platelets function in TLR9 organization and signaling

    J. Thon, C. Peters, K. Machlus, R. Aslam, J. Rowley, H. Macleod, M. Devine, T. Fuchs, A. Weyrich, J. Semple, R. Flaumenhaft, J. Italiano

    Journal of Cell Biology. 2012, 198, 561-574

  160. Engagement of Platelet Toll-Like Receptor 9 by Novel Endogenous Ligands Promotes Platelet Hyperreactivity and Thrombosis

    S. Panigrahi, Y. Ma, L. Hong, D. Gao, X. West, R. Salomon, T. Byzova, E. Podrez

    Circulation Research. 2013, 112, 103-112

  161. Mitochondria in lung biology and pathology: more than just a powerhouse

    P. Schumacker, M. Gillespie, K. Nakahira, A. Choi, E. Crouser, C. Piantadosi, J. Bhattacharya

    American Journal of Physiology-Lung Cellular and Molecular Physiology. 2014, 306, L962-L974

  162. MITOCHONDRIAL DNA IS RELEASED BY SHOCK AND ACTIVATES NEUTROPHILS VIA P38 MAP KINASE

    Q. Zhang, K. Itagaki, C. Hauser

    Shock. 2010, 34, 55-59

  163. Circulating mitochondrial DAMPs cause inflammatory responses to injury

    Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, K. Brohi, K. Itagaki, C. Hauser

    Nature. 2010, 464, 104-107

  164. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation

    L. Boudreau, A. Duchez, N. Cloutier, D. Soulet, N. Martin, J. Bollinger, A. Paré, M. Rousseau, G. Naika, T. Lévesque, C. Laflamme, G. Marcoux, G. Lambeau, R. Farndale, M. Pouliot, H. Hamzeh-Cognasse, F. Cognasse, O. Garraud, P. Nigrovic, H. Guderley, S. Lacroix, L. Thibault, J. Semple, M. Gelb, E. Boilard

    Blood. 2014, 124, 2173-2183

  165. Mitochondrial DAMPs Increase Endothelial Permeability through Neutrophil Dependent and Independent Pathways

    S. Sun, T. Sursal, Y. Adibnia, C. Zhao, Y. Zheng, H. Li, L. Otterbein, C. Hauser, K. Itagaki

    PLoS ONE. 2013, 8, e59989

  166. Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE

    J. Tian, A. Avalos, S. Mao, B. Chen, K. Senthil, H. Wu, P. Parroche, S. Drabic, D. Golenbock, C. Sirois, J. Hua, L. An, L. Audoly, G. La Rosa, A. Bierhaus, P. Naworth, A. Marshak-Rothstein, M. Crow, K. Fitzgerald, E. Latz, P. Kiener, A. Coyle

    Nature Immunology. 2007, 8, 487-496

  167. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE

    V. Urbonaviciute, B. Fürnrohr, S. Meister, L. Munoz, P. Heyder, F. De Marchis, M. Bianchi, C. Kirschning, H. Wagner, A. Manfredi, J. Kalden, G. Schett, P. Rovere-Querini, M. Herrmann, R. Voll

    Journal of Experimental Medicine. 2008, 205, 3007-3018

  168. Platelets and Complement Cross-Talk in Early Atherogenesis

    H. Kim, E. Conway

    Frontiers in Cardiovascular Medicine. 2019, 6,

  169. Vasodilator-Stimulated Phosphoprotein (VASP)-dependent and -independent pathways regulate thrombin-induced activation of Rap1b in platelets

    P. Benz, H. Laban, J. Zink, L. Günther, U. Walter, S. Gambaryan, K. Dib

    Cell Communication and Signaling. 2016, 14,

  170. PGE1 and PGE2 modify platelet function through different prostanoid receptors

    D. Iyú, M. Jüttner, J. Glenn, A. White, A. Johnson, S. Fox, S. Heptinstall

    Prostaglandins & Other Lipid Mediators. 2011, 94, 9-16

  171. Endothelial Function and Dysfunction

    J. Deanfield, J. Halcox, T. Rabelink

    Circulation. 2007, 115, 1285-1295

  172. Platelet-Derived Nitric Oxide Signaling and Regulation

    E. Gkaliagkousi, J. Ritter, A. Ferro

    Circulation Research. 2007, 101, 654-662

  173. Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen

    W. ROBERTS, R. RIBA, S. HOMER-VANNIASINKAM, R. FARNDALE, K. NASEEM

    Journal of Thrombosis and Haemostasis. 2008, 6, 2175-2185

  174. Platelets

    Michelson AD.

    Elsevier. 2013, ,

  175. The unique contribution of ion channels to platelet and megakaryocyte function

    M. MAHAUT-SMITH

    Journal of Thrombosis and Haemostasis. 2012, 10, 1722-1732